Loading…

Evolution in X-ray analysis from micro to atomic scales in aberration-corrected scanning transmission electron microscopes

X-ray analysis is one of the most robust approaches to extract quantitative information from various materials and is widely used in various fields ever since Raimond Castaing established procedures to analyze electron-induced X-ray signals for materials characterization '70 years ago'. Th...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy 2022-02, Vol.71 (Supplement_1), p.i132-i147
Main Authors: Watanabe, M, Egerton, R F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:X-ray analysis is one of the most robust approaches to extract quantitative information from various materials and is widely used in various fields ever since Raimond Castaing established procedures to analyze electron-induced X-ray signals for materials characterization '70 years ago'. The recent development of aberration-correction technology in a (scanning) transmission electron microscopes (S/TEMs) offers refined electron probes below the Å level, making atomic-resolution X-ray analysis possible. In addition, the latest silicon drift detectors allow complex detector arrangements and new configurational designs to maximize the collection efficiency of X-ray signals, which make it feasible to acquire X-ray signals from single atoms. In this review paper, recent progress and advantages related to S/TEM-based X-ray analysis will be discussed: (i) progress in quantification for materials characterization including the recent applications to light element analysis, (ii) progress in analytical spatial resolution for atomic-resolution analysis and (iii) progress in analytical sensitivity toward single-atom detection and analysis in materials. Both atomic-resolution analysis and single-atom analysis are evaluated theoretically through multislice-based calculation for electron propagation in oriented crystalline specimen in combination with X-ray spectrum simulation.
ISSN:2050-5698
2050-5701
DOI:10.1093/jmicro/dfab026