Loading…
Fused‐Nonacyclic Multi‐Resonance Delayed Fluorescence Emitter Based on Ladder‐Thiaborin Exhibiting Narrowband Sky‐Blue Emission with Accelerated Reverse Intersystem Crossing
Developing organic luminophores with unique capability of strong narrowband emission is both crucial and challenging for the further advancement of organic light‐emitting diodes (OLEDs). Herein, a nanographitic fused‐nonacyclic π‐system (BSBS‐N1), which was strategically embedded with multiple boron...
Saved in:
Published in: | Angewandte Chemie International Edition 2021-09, Vol.60 (37), p.20280-20285 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing organic luminophores with unique capability of strong narrowband emission is both crucial and challenging for the further advancement of organic light‐emitting diodes (OLEDs). Herein, a nanographitic fused‐nonacyclic π‐system (BSBS‐N1), which was strategically embedded with multiple boron, nitrogen, and sulfur atoms, was developed as a new multi‐resonance thermally activated delayed fluorescence (MR‐TADF) emitter. Narrowband sky‐blue emission with a peak at 478 nm, full width at half maximum of 24 nm, and photoluminescence quantum yield of 89 % was obtained with BSBS‐N1. Additionally, the spin‐orbit coupling was enhanced by incorporating two sulfur atoms, thereby facilitating the spin‐flipping process between the excited triplet and singlet states. OLEDs based on BSBS‐N1 as a sky‐blue MR‐TADF emitter achieved a high maximum external electroluminescence quantum efficiency of 21.0 %, with improved efficiency roll‐off.
A nanographitic fused‐nonacyclic π‐system embedded with multiple boron, nitrogen, and sulfur atoms was developed as a narrowband sky‐blue delayed fluorescence emitter for organic light‐emitting diodes. A design concept for inducing a synergetic effect on the luminescence function by exquisite multi‐heteroatom hybridization is presented. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202108283 |