Loading…

Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid

As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthes...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2021-08, Vol.105 (14-15), p.5809-5819
Main Authors: Zhou, Pingping, Yue, Chunlei, Shen, Bin, Du, Yi, Xu, Nannan, Ye, Lidan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3
cites cdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3
container_end_page 5819
container_issue 14-15
container_start_page 5809
container_title Applied microbiology and biotechnology
container_volume 105
creator Zhou, Pingping
Yue, Chunlei
Shen, Bin
Du, Yi
Xu, Nannan
Ye, Lidan
description As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently, Saccharomyces cerevisiae has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified GAL regulatory system to control the genome-integrated pathway genes in S. cerevisiae and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites. Key points Genomic integration of ORgTAL , OHpaB , and HpaC for caffeic acid production in yeast. Feedback inhibition elimination and Aro10 deletion improved caffeic acid production. The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.
doi_str_mv 10.1007/s00253-021-11445-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553525889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673430284</galeid><sourcerecordid>A673430284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgdR8Fr9A64G3Ohiak4mn8tS1BYqQj8WrkImOblNmTu5JjPF_ntze4VyRcpZBA7P83LC2zTvgRwDIfJzIYTyviMUOgDGeAcvmhWwnnZEAHvZrAhI3kmu1evmTSl3hABVQqyan99xtkMao2txWscJMcdp3abQXlnnbm1OmweHpXWY8T6WaLENKVf21k4OfbvNyS9ujmnaOc6GgDXKuujfNq-CHQu--_seNTdfv1yfnnUXP76dn55cdI6DnjuJdJCcieC10go8DA5BMy8GzwMAahBKMmKpt1wpquQgpQqhR-314Cz2R83HfW495deCZTabWByOo50wLcVQzntOq6sr-uEf9C4tearXVUowoRWX5Ila2xFNnEKas3W7UHMiZM96QhWr1PF_qDoeN9GlCUOs-wPh04FQmRl_z2u7lGLOry4PWbpnXU6lZAxmm-PG5gcDxOwKN_vCTS3cPBZuoEr9XirbXYeYn373jPUHF7WrZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564698570</pqid></control><display><type>article</type><title>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zhou, Pingping ; Yue, Chunlei ; Shen, Bin ; Du, Yi ; Xu, Nannan ; Ye, Lidan</creator><creatorcontrib>Zhou, Pingping ; Yue, Chunlei ; Shen, Bin ; Du, Yi ; Xu, Nannan ; Ye, Lidan</creatorcontrib><description>As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently, Saccharomyces cerevisiae has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified GAL regulatory system to control the genome-integrated pathway genes in S. cerevisiae and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites. Key points Genomic integration of ORgTAL , OHpaB , and HpaC for caffeic acid production in yeast. Feedback inhibition elimination and Aro10 deletion improved caffeic acid production. The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11445-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Acids ; Analysis ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; Brewer's yeast ; Caffeic acid ; Chemical compounds ; Chemical synthesis ; Combinatorial analysis ; Feedback ; Feedback inhibition ; Food irradiation ; Gene expression ; Genes ; Genetic aspects ; Genomics ; Life Sciences ; Metabolic engineering ; Metabolites ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Phenolic acids ; Phenols ; Physiological aspects ; Plant extracts ; Precursors ; Saccharomyces cerevisiae ; Stability ; Tyrosine ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2021-08, Vol.105 (14-15), p.5809-5819</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</citedby><cites>FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</cites><orcidid>0000-0001-5162-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2564698570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2564698570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Zhou, Pingping</creatorcontrib><creatorcontrib>Yue, Chunlei</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Xu, Nannan</creatorcontrib><creatorcontrib>Ye, Lidan</creatorcontrib><title>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently, Saccharomyces cerevisiae has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified GAL regulatory system to control the genome-integrated pathway genes in S. cerevisiae and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites. Key points Genomic integration of ORgTAL , OHpaB , and HpaC for caffeic acid production in yeast. Feedback inhibition elimination and Aro10 deletion improved caffeic acid production. The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.</description><subject>Acid production</subject><subject>Acids</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>Caffeic acid</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Combinatorial analysis</subject><subject>Feedback</subject><subject>Feedback inhibition</subject><subject>Food irradiation</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Phenolic acids</subject><subject>Phenols</subject><subject>Physiological aspects</subject><subject>Plant extracts</subject><subject>Precursors</subject><subject>Saccharomyces cerevisiae</subject><subject>Stability</subject><subject>Tyrosine</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1rFTEUhgdR8Fr9A64G3Ohiak4mn8tS1BYqQj8WrkImOblNmTu5JjPF_ntze4VyRcpZBA7P83LC2zTvgRwDIfJzIYTyviMUOgDGeAcvmhWwnnZEAHvZrAhI3kmu1evmTSl3hABVQqyan99xtkMao2txWscJMcdp3abQXlnnbm1OmweHpXWY8T6WaLENKVf21k4OfbvNyS9ujmnaOc6GgDXKuujfNq-CHQu--_seNTdfv1yfnnUXP76dn55cdI6DnjuJdJCcieC10go8DA5BMy8GzwMAahBKMmKpt1wpquQgpQqhR-314Cz2R83HfW495deCZTabWByOo50wLcVQzntOq6sr-uEf9C4tearXVUowoRWX5Ila2xFNnEKas3W7UHMiZM96QhWr1PF_qDoeN9GlCUOs-wPh04FQmRl_z2u7lGLOry4PWbpnXU6lZAxmm-PG5gcDxOwKN_vCTS3cPBZuoEr9XirbXYeYn373jPUHF7WrZg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhou, Pingping</creator><creator>Yue, Chunlei</creator><creator>Shen, Bin</creator><creator>Du, Yi</creator><creator>Xu, Nannan</creator><creator>Ye, Lidan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5162-1198</orcidid></search><sort><creationdate>20210801</creationdate><title>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</title><author>Zhou, Pingping ; Yue, Chunlei ; Shen, Bin ; Du, Yi ; Xu, Nannan ; Ye, Lidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>Caffeic acid</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Combinatorial analysis</topic><topic>Feedback</topic><topic>Feedback inhibition</topic><topic>Food irradiation</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Phenolic acids</topic><topic>Phenols</topic><topic>Physiological aspects</topic><topic>Plant extracts</topic><topic>Precursors</topic><topic>Saccharomyces cerevisiae</topic><topic>Stability</topic><topic>Tyrosine</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Pingping</creatorcontrib><creatorcontrib>Yue, Chunlei</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Xu, Nannan</creatorcontrib><creatorcontrib>Ye, Lidan</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Pingping</au><au>Yue, Chunlei</au><au>Shen, Bin</au><au>Du, Yi</au><au>Xu, Nannan</au><au>Ye, Lidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>105</volume><issue>14-15</issue><spage>5809</spage><epage>5819</epage><pages>5809-5819</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently, Saccharomyces cerevisiae has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified GAL regulatory system to control the genome-integrated pathway genes in S. cerevisiae and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites. Key points Genomic integration of ORgTAL , OHpaB , and HpaC for caffeic acid production in yeast. Feedback inhibition elimination and Aro10 deletion improved caffeic acid production. The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00253-021-11445-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5162-1198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2021-08, Vol.105 (14-15), p.5809-5819
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2553525889
source ABI/INFORM Global; Springer Nature
subjects Acid production
Acids
Analysis
Biomedical and Life Sciences
Biosynthesis
Biotechnological Products and Process Engineering
Biotechnology
Brewer's yeast
Caffeic acid
Chemical compounds
Chemical synthesis
Combinatorial analysis
Feedback
Feedback inhibition
Food irradiation
Gene expression
Genes
Genetic aspects
Genomics
Life Sciences
Metabolic engineering
Metabolites
Methods
Microbial Genetics and Genomics
Microbiology
Microorganisms
Phenolic acids
Phenols
Physiological aspects
Plant extracts
Precursors
Saccharomyces cerevisiae
Stability
Tyrosine
Yeast
Yeasts
title Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Saccharomyces%20cerevisiae%20for%20enhanced%20production%20of%20caffeic%20acid&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhou,%20Pingping&rft.date=2021-08-01&rft.volume=105&rft.issue=14-15&rft.spage=5809&rft.epage=5819&rft.pages=5809-5819&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11445-1&rft_dat=%3Cgale_proqu%3EA673430284%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564698570&rft_id=info:pmid/&rft_galeid=A673430284&rfr_iscdi=true