Loading…
Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid
As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthes...
Saved in:
Published in: | Applied microbiology and biotechnology 2021-08, Vol.105 (14-15), p.5809-5819 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3 |
container_end_page | 5819 |
container_issue | 14-15 |
container_start_page | 5809 |
container_title | Applied microbiology and biotechnology |
container_volume | 105 |
creator | Zhou, Pingping Yue, Chunlei Shen, Bin Du, Yi Xu, Nannan Ye, Lidan |
description | As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently,
Saccharomyces cerevisiae
has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified
GAL
regulatory system to control the genome-integrated pathway genes in
S. cerevisiae
and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites.
Key points
Genomic integration of ORgTAL
,
OHpaB
,
and HpaC for caffeic acid production in yeast.
Feedback inhibition elimination and Aro10 deletion improved caffeic acid production.
The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast. |
doi_str_mv | 10.1007/s00253-021-11445-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553525889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673430284</galeid><sourcerecordid>A673430284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgdR8Fr9A64G3Ohiak4mn8tS1BYqQj8WrkImOblNmTu5JjPF_ntze4VyRcpZBA7P83LC2zTvgRwDIfJzIYTyviMUOgDGeAcvmhWwnnZEAHvZrAhI3kmu1evmTSl3hABVQqyan99xtkMao2txWscJMcdp3abQXlnnbm1OmweHpXWY8T6WaLENKVf21k4OfbvNyS9ujmnaOc6GgDXKuujfNq-CHQu--_seNTdfv1yfnnUXP76dn55cdI6DnjuJdJCcieC10go8DA5BMy8GzwMAahBKMmKpt1wpquQgpQqhR-314Cz2R83HfW495deCZTabWByOo50wLcVQzntOq6sr-uEf9C4tearXVUowoRWX5Ila2xFNnEKas3W7UHMiZM96QhWr1PF_qDoeN9GlCUOs-wPh04FQmRl_z2u7lGLOry4PWbpnXU6lZAxmm-PG5gcDxOwKN_vCTS3cPBZuoEr9XirbXYeYn373jPUHF7WrZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564698570</pqid></control><display><type>article</type><title>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zhou, Pingping ; Yue, Chunlei ; Shen, Bin ; Du, Yi ; Xu, Nannan ; Ye, Lidan</creator><creatorcontrib>Zhou, Pingping ; Yue, Chunlei ; Shen, Bin ; Du, Yi ; Xu, Nannan ; Ye, Lidan</creatorcontrib><description>As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently,
Saccharomyces cerevisiae
has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified
GAL
regulatory system to control the genome-integrated pathway genes in
S. cerevisiae
and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites.
Key points
Genomic integration of ORgTAL
,
OHpaB
,
and HpaC for caffeic acid production in yeast.
Feedback inhibition elimination and Aro10 deletion improved caffeic acid production.
The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11445-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Acids ; Analysis ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; Brewer's yeast ; Caffeic acid ; Chemical compounds ; Chemical synthesis ; Combinatorial analysis ; Feedback ; Feedback inhibition ; Food irradiation ; Gene expression ; Genes ; Genetic aspects ; Genomics ; Life Sciences ; Metabolic engineering ; Metabolites ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Phenolic acids ; Phenols ; Physiological aspects ; Plant extracts ; Precursors ; Saccharomyces cerevisiae ; Stability ; Tyrosine ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2021-08, Vol.105 (14-15), p.5809-5819</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</citedby><cites>FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</cites><orcidid>0000-0001-5162-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2564698570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2564698570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Zhou, Pingping</creatorcontrib><creatorcontrib>Yue, Chunlei</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Xu, Nannan</creatorcontrib><creatorcontrib>Ye, Lidan</creatorcontrib><title>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently,
Saccharomyces cerevisiae
has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified
GAL
regulatory system to control the genome-integrated pathway genes in
S. cerevisiae
and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites.
Key points
Genomic integration of ORgTAL
,
OHpaB
,
and HpaC for caffeic acid production in yeast.
Feedback inhibition elimination and Aro10 deletion improved caffeic acid production.
The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.</description><subject>Acid production</subject><subject>Acids</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>Caffeic acid</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Combinatorial analysis</subject><subject>Feedback</subject><subject>Feedback inhibition</subject><subject>Food irradiation</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Phenolic acids</subject><subject>Phenols</subject><subject>Physiological aspects</subject><subject>Plant extracts</subject><subject>Precursors</subject><subject>Saccharomyces cerevisiae</subject><subject>Stability</subject><subject>Tyrosine</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1rFTEUhgdR8Fr9A64G3Ohiak4mn8tS1BYqQj8WrkImOblNmTu5JjPF_ntze4VyRcpZBA7P83LC2zTvgRwDIfJzIYTyviMUOgDGeAcvmhWwnnZEAHvZrAhI3kmu1evmTSl3hABVQqyan99xtkMao2txWscJMcdp3abQXlnnbm1OmweHpXWY8T6WaLENKVf21k4OfbvNyS9ujmnaOc6GgDXKuujfNq-CHQu--_seNTdfv1yfnnUXP76dn55cdI6DnjuJdJCcieC10go8DA5BMy8GzwMAahBKMmKpt1wpquQgpQqhR-314Cz2R83HfW495deCZTabWByOo50wLcVQzntOq6sr-uEf9C4tearXVUowoRWX5Ila2xFNnEKas3W7UHMiZM96QhWr1PF_qDoeN9GlCUOs-wPh04FQmRl_z2u7lGLOry4PWbpnXU6lZAxmm-PG5gcDxOwKN_vCTS3cPBZuoEr9XirbXYeYn373jPUHF7WrZg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhou, Pingping</creator><creator>Yue, Chunlei</creator><creator>Shen, Bin</creator><creator>Du, Yi</creator><creator>Xu, Nannan</creator><creator>Ye, Lidan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5162-1198</orcidid></search><sort><creationdate>20210801</creationdate><title>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</title><author>Zhou, Pingping ; Yue, Chunlei ; Shen, Bin ; Du, Yi ; Xu, Nannan ; Ye, Lidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>Caffeic acid</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Combinatorial analysis</topic><topic>Feedback</topic><topic>Feedback inhibition</topic><topic>Food irradiation</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Phenolic acids</topic><topic>Phenols</topic><topic>Physiological aspects</topic><topic>Plant extracts</topic><topic>Precursors</topic><topic>Saccharomyces cerevisiae</topic><topic>Stability</topic><topic>Tyrosine</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Pingping</creatorcontrib><creatorcontrib>Yue, Chunlei</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Xu, Nannan</creatorcontrib><creatorcontrib>Ye, Lidan</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Pingping</au><au>Yue, Chunlei</au><au>Shen, Bin</au><au>Du, Yi</au><au>Xu, Nannan</au><au>Ye, Lidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>105</volume><issue>14-15</issue><spage>5809</spage><epage>5819</epage><pages>5809-5819</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>As a natural phenolic acid product of plant source, caffeic acid displays diverse biological activities and acts as an important precursor for the synthesis of other valuable compounds. Limitations in chemical synthesis or plant extraction of caffeic acid trigger interest in its microbial biosynthesis. Recently,
Saccharomyces cerevisiae
has been reported for the biosynthesis of caffeic acid via episomal plasmid-mediated expression of pathway genes. However, the production was far from satisfactory and even relied on the addition of precursor. In this study, we first established a controllable and stable caffeic acid pathway by employing a modified
GAL
regulatory system to control the genome-integrated pathway genes in
S. cerevisiae
and realized biosynthesis of 222.7 mg/L caffeic acid. Combinatorial engineering strategies including eliminating the tyrosine-induced feedback inhibition, deleting genes involved in competing pathways, and overexpressing rate-limiting enzymes led to about 2.6-fold improvement in the caffeic acid production, reaching up to 569.0 mg/L in shake-flask cultures. To our knowledge, this is the highest ever reported titer of caffeic acid synthesized by engineered yeast. This work showed the prospect for microbial biosynthesis of caffeic acid and laid the foundation for constructing biosynthetic pathways of its derived metabolites.
Key points
Genomic integration of ORgTAL
,
OHpaB
,
and HpaC for caffeic acid production in yeast.
Feedback inhibition elimination and Aro10 deletion improved caffeic acid production.
The highest ever reported titer (569.0 mg/L) of caffeic acid synthesized by yeast.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00253-021-11445-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5162-1198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2021-08, Vol.105 (14-15), p.5809-5819 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2553525889 |
source | ABI/INFORM Global; Springer Nature |
subjects | Acid production Acids Analysis Biomedical and Life Sciences Biosynthesis Biotechnological Products and Process Engineering Biotechnology Brewer's yeast Caffeic acid Chemical compounds Chemical synthesis Combinatorial analysis Feedback Feedback inhibition Food irradiation Gene expression Genes Genetic aspects Genomics Life Sciences Metabolic engineering Metabolites Methods Microbial Genetics and Genomics Microbiology Microorganisms Phenolic acids Phenols Physiological aspects Plant extracts Precursors Saccharomyces cerevisiae Stability Tyrosine Yeast Yeasts |
title | Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Saccharomyces%20cerevisiae%20for%20enhanced%20production%20of%20caffeic%20acid&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhou,%20Pingping&rft.date=2021-08-01&rft.volume=105&rft.issue=14-15&rft.spage=5809&rft.epage=5819&rft.pages=5809-5819&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11445-1&rft_dat=%3Cgale_proqu%3EA673430284%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-7e2b7546fd98981d1bce194d6bd5f11e9168740a2da588287b778ff3e9d9bcae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564698570&rft_id=info:pmid/&rft_galeid=A673430284&rfr_iscdi=true |