Loading…
Star Polymer Size, Charge Content, and Hydrophobicity Affect their Leaf Uptake and Translocation in Plants
Determination of how the properties of nanocarriers of agrochemicals affect their uptake and translocation in plants would enable more efficient agent delivery. Here, we synthesized star polymer nanocarriers poly(acrylic acid)-block-poly(2-(methylsulfinyl)ethyl acrylate) (PAA-b-PMSEA) and poly(a...
Saved in:
Published in: | Environmental science & technology 2021-08, Vol.55 (15), p.10758-10768 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Determination of how the properties of nanocarriers of agrochemicals affect their uptake and translocation in plants would enable more efficient agent delivery. Here, we synthesized star polymer nanocarriers poly(acrylic acid)-block-poly(2-(methylsulfinyl)ethyl acrylate) (PAA-b-PMSEA) and poly(acrylic acid)-block-poly((2-(methylsulfinyl)ethyl acrylate)-co-(2-(methylthio)ethyl acrylate)) (PAA-b-P(MSEA-co-MTEA)) with well-controlled sizes (from 6 to 35 nm), negative charge content (from 17% to 83% PAA), and hydrophobicity and quantified their leaf uptake, phloem loading, and distribution in tomato (Solanum lycopersicum) plants 3 days after foliar application of 20 μL of a 1g L–1 star polymer solution. In spite of their property differences, ∼30% of the applied star polymers translocated to other plant organs, higher than uptake of conventional foliar applied agrochemicals ( |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.1c01065 |