Loading…
Extended zeros and model matching
The model matching equation $T(z) = P(z)M(z)$ induces constraints upon the multivariate zero structures of $P(z)$ and $M(z)$; the nature of the constraint is best explained by extending the usual notion of zero. In particular, the extended $\Gamma $-zero module of $P(z)$ must contain as a submodule...
Saved in:
Published in: | SIAM journal on control and optimization 1991-05, Vol.29 (3), p.562-593 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3 |
container_end_page | 593 |
container_issue | 3 |
container_start_page | 562 |
container_title | SIAM journal on control and optimization |
container_volume | 29 |
creator | SAIN, M. K WYMAN, B. F PECZKOWSKI, J. L |
description | The model matching equation $T(z) = P(z)M(z)$ induces constraints upon the multivariate zero structures of $P(z)$ and $M(z)$; the nature of the constraint is best explained by extending the usual notion of zero. In particular, the extended $\Gamma $-zero module of $P(z)$ must contain as a submodule the module $Z_\Gamma $ of matching $\Gamma $-zeros, which depends only upon $T(z)$ and $M(z)$; and the extended $\Omega $-zero module of $M(z)$ must contain as a factor module the module $Z_\Omega $ of matching $\Omega $-zeros, which depends only upon $T(z)$ and $P(z)$. Essential solutions, in which the constraint is by module isomorphism, are possible if and only if the nullity of $P(z)$ does not exceed the nullity of $T(z)$, on the one hand, or the co-nullity of $M(z)$ does not exceed the co-nullity of $T(z)$, on the other. Both the matching zero modules and their finitely generated, torsion parts--which have state-space interpretation--can be given concrete, intuitive interpretation in terms of short exact sequences, though the former is less involved than the latter. Moreover, in the case of the latter, a natural notion of essential solution is not available, in marked contrast to the situation for poles. |
doi_str_mv | 10.1137/0329032 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25545289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25545289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtYq_oVVRE-rM_nazVFK_YCCl95Dkk10y37UZAvqrzdi8eBhmMvDy8xLyDnCLSKr7oBRleeAzBCUKCtk9SGZAZOsBKTqmJyktAFAzpHPyMXyY_JD45viy8cxFWZoin5sfFf0ZnJv7fB6So6C6ZI_2-85WT8s14uncvXy-Ly4X5WOIUylq6lgTFnW1CFYhhZtxYFbThl1YJHLKkhRU7TKQkBRWUmZp8aD8r5u2Jxc_8Zu4_i-82nSfZuc7zoz-HGXNBWCC1qrDC__wc24i0M-TSsqlKQgq4xufpHLT6Xog97GtjfxUyPon5r0vqYsr_ZxJjnThWgG16Y_LkBynj_7BnzCYtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925962067</pqid></control><display><type>article</type><title>Extended zeros and model matching</title><source>ABI/INFORM global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>SAIN, M. K ; WYMAN, B. F ; PECZKOWSKI, J. L</creator><creatorcontrib>SAIN, M. K ; WYMAN, B. F ; PECZKOWSKI, J. L</creatorcontrib><description>The model matching equation $T(z) = P(z)M(z)$ induces constraints upon the multivariate zero structures of $P(z)$ and $M(z)$; the nature of the constraint is best explained by extending the usual notion of zero. In particular, the extended $\Gamma $-zero module of $P(z)$ must contain as a submodule the module $Z_\Gamma $ of matching $\Gamma $-zeros, which depends only upon $T(z)$ and $M(z)$; and the extended $\Omega $-zero module of $M(z)$ must contain as a factor module the module $Z_\Omega $ of matching $\Omega $-zeros, which depends only upon $T(z)$ and $P(z)$. Essential solutions, in which the constraint is by module isomorphism, are possible if and only if the nullity of $P(z)$ does not exceed the nullity of $T(z)$, on the one hand, or the co-nullity of $M(z)$ does not exceed the co-nullity of $T(z)$, on the other. Both the matching zero modules and their finitely generated, torsion parts--which have state-space interpretation--can be given concrete, intuitive interpretation in terms of short exact sequences, though the former is less involved than the latter. Moreover, in the case of the latter, a natural notion of essential solution is not available, in marked contrast to the situation for poles.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0329032</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory ; Control theory. Systems ; Exact sciences and technology ; System theory</subject><ispartof>SIAM journal on control and optimization, 1991-05, Vol.29 (3), p.562-593</ispartof><rights>1992 INIST-CNRS</rights><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3</citedby><cites>FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/925962067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11669,27903,27904,36039,36040,44342</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5064425$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SAIN, M. K</creatorcontrib><creatorcontrib>WYMAN, B. F</creatorcontrib><creatorcontrib>PECZKOWSKI, J. L</creatorcontrib><title>Extended zeros and model matching</title><title>SIAM journal on control and optimization</title><description>The model matching equation $T(z) = P(z)M(z)$ induces constraints upon the multivariate zero structures of $P(z)$ and $M(z)$; the nature of the constraint is best explained by extending the usual notion of zero. In particular, the extended $\Gamma $-zero module of $P(z)$ must contain as a submodule the module $Z_\Gamma $ of matching $\Gamma $-zeros, which depends only upon $T(z)$ and $M(z)$; and the extended $\Omega $-zero module of $M(z)$ must contain as a factor module the module $Z_\Omega $ of matching $\Omega $-zeros, which depends only upon $T(z)$ and $P(z)$. Essential solutions, in which the constraint is by module isomorphism, are possible if and only if the nullity of $P(z)$ does not exceed the nullity of $T(z)$, on the one hand, or the co-nullity of $M(z)$ does not exceed the co-nullity of $T(z)$, on the other. Both the matching zero modules and their finitely generated, torsion parts--which have state-space interpretation--can be given concrete, intuitive interpretation in terms of short exact sequences, though the former is less involved than the latter. Moreover, in the case of the latter, a natural notion of essential solution is not available, in marked contrast to the situation for poles.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>System theory</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpd0E1LAzEQBuAgCtYq_oVVRE-rM_nazVFK_YCCl95Dkk10y37UZAvqrzdi8eBhmMvDy8xLyDnCLSKr7oBRleeAzBCUKCtk9SGZAZOsBKTqmJyktAFAzpHPyMXyY_JD45viy8cxFWZoin5sfFf0ZnJv7fB6So6C6ZI_2-85WT8s14uncvXy-Ly4X5WOIUylq6lgTFnW1CFYhhZtxYFbThl1YJHLKkhRU7TKQkBRWUmZp8aD8r5u2Jxc_8Zu4_i-82nSfZuc7zoz-HGXNBWCC1qrDC__wc24i0M-TSsqlKQgq4xufpHLT6Xog97GtjfxUyPon5r0vqYsr_ZxJjnThWgG16Y_LkBynj_7BnzCYtc</recordid><startdate>19910501</startdate><enddate>19910501</enddate><creator>SAIN, M. K</creator><creator>WYMAN, B. F</creator><creator>PECZKOWSKI, J. L</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19910501</creationdate><title>Extended zeros and model matching</title><author>SAIN, M. K ; WYMAN, B. F ; PECZKOWSKI, J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAIN, M. K</creatorcontrib><creatorcontrib>WYMAN, B. F</creatorcontrib><creatorcontrib>PECZKOWSKI, J. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAIN, M. K</au><au>WYMAN, B. F</au><au>PECZKOWSKI, J. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended zeros and model matching</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1991-05-01</date><risdate>1991</risdate><volume>29</volume><issue>3</issue><spage>562</spage><epage>593</epage><pages>562-593</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>The model matching equation $T(z) = P(z)M(z)$ induces constraints upon the multivariate zero structures of $P(z)$ and $M(z)$; the nature of the constraint is best explained by extending the usual notion of zero. In particular, the extended $\Gamma $-zero module of $P(z)$ must contain as a submodule the module $Z_\Gamma $ of matching $\Gamma $-zeros, which depends only upon $T(z)$ and $M(z)$; and the extended $\Omega $-zero module of $M(z)$ must contain as a factor module the module $Z_\Omega $ of matching $\Omega $-zeros, which depends only upon $T(z)$ and $P(z)$. Essential solutions, in which the constraint is by module isomorphism, are possible if and only if the nullity of $P(z)$ does not exceed the nullity of $T(z)$, on the one hand, or the co-nullity of $M(z)$ does not exceed the co-nullity of $T(z)$, on the other. Both the matching zero modules and their finitely generated, torsion parts--which have state-space interpretation--can be given concrete, intuitive interpretation in terms of short exact sequences, though the former is less involved than the latter. Moreover, in the case of the latter, a natural notion of essential solution is not available, in marked contrast to the situation for poles.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0329032</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 1991-05, Vol.29 (3), p.562-593 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_miscellaneous_25545289 |
source | ABI/INFORM global; LOCUS - SIAM's Online Journal Archive |
subjects | Applied sciences Computer science control theory systems Control theory Control theory. Systems Exact sciences and technology System theory |
title | Extended zeros and model matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20zeros%20and%20model%20matching&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=SAIN,%20M.%20K&rft.date=1991-05-01&rft.volume=29&rft.issue=3&rft.spage=562&rft.epage=593&rft.pages=562-593&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/0329032&rft_dat=%3Cproquest_cross%3E25545289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-c825339b3d8ffb31b1b7404b4232c0b1467f65821b9b0f157b623e2ae09ee8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=925962067&rft_id=info:pmid/&rfr_iscdi=true |