Loading…
Evaluating the maximize minimum distance formulation of the linear discriminant problem
The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametr...
Saved in:
Published in: | European journal of operational research 1989-07, Vol.41 (2), p.240-248 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3 |
container_end_page | 248 |
container_issue | 2 |
container_start_page | 240 |
container_title | European journal of operational research |
container_volume | 41 |
creator | Rubin, Paul A. |
description | The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used. |
doi_str_mv | 10.1016/0377-2217(89)90390-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25552768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221789903901</els_id><sourcerecordid>25552768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMo2Lb-AxeFiOiiNEnlVRthGMYXA24UlyGdunHSVCVtUtU4_npvTQ-9cGHg5mbxnZuTE0KeM_qWUabe0U7rlnOmX5v-TU-7nrbsAdkwo3mrjKIPyeaMPCZPat1TSplkckN-XB3duLg5pp_NfAPN5H7HKf7BQ0xxWqZmiHV2yUMTcpmWEcmcmhzu4DEmcGVFfEFVcmluDiXvRpiekkfBjRWe3fct-f7h6tvlp_b668fPlxfXrRfSzK3uVOAa6KDAcCqF94EJKXcQTKe84coH30uh3E7RQfdGmSB7FrTknu0AfLclr05z8d5fC9TZTugGxtElyEu1XErJtTIIvvgH3OelJPRmORVMKYXBbYk4Qb7kWgsEe8CHuXJrGbVr1HbN0a45WtPbu6gtQ9mXk6zAAfxZA7j2uUC1R9s5wXC7xWI9SjsXsTjWYe2CWi6MvZknHPby3qir3o2hYPqxnofqTnSGScTenzDAdI8Riq0-An7UEAv42Q45_t_0X-_Qq8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204166690</pqid></control><display><type>article</type><title>Evaluating the maximize minimum distance formulation of the linear discriminant problem</title><source>Backfile Package - Decision Sciences [YDT]</source><creator>Rubin, Paul A.</creator><creatorcontrib>Rubin, Paul A.</creatorcontrib><description>The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(89)90390-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Discriminant analysis ; Exact sciences and technology ; Linear programming ; Mathematical models ; Mathematical programming ; Maximization ; Minimization ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Statistical analysis ; statistics ; Theory</subject><ispartof>European journal of operational research, 1989-07, Vol.41 (2), p.240-248</ispartof><rights>1989</rights><rights>1989 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 25, 1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</citedby><cites>FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0377221789903901$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3440,27924,27925,45991</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7343815$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a41_3ay_3a1989_3ai_3a2_3ap_3a240-248.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubin, Paul A.</creatorcontrib><title>Evaluating the maximize minimum distance formulation of the linear discriminant problem</title><title>European journal of operational research</title><description>The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.</description><subject>Applied sciences</subject><subject>Discriminant analysis</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Maximization</subject><subject>Minimization</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Statistical analysis</subject><subject>statistics</subject><subject>Theory</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMo2Lb-AxeFiOiiNEnlVRthGMYXA24UlyGdunHSVCVtUtU4_npvTQ-9cGHg5mbxnZuTE0KeM_qWUabe0U7rlnOmX5v-TU-7nrbsAdkwo3mrjKIPyeaMPCZPat1TSplkckN-XB3duLg5pp_NfAPN5H7HKf7BQ0xxWqZmiHV2yUMTcpmWEcmcmhzu4DEmcGVFfEFVcmluDiXvRpiekkfBjRWe3fct-f7h6tvlp_b668fPlxfXrRfSzK3uVOAa6KDAcCqF94EJKXcQTKe84coH30uh3E7RQfdGmSB7FrTknu0AfLclr05z8d5fC9TZTugGxtElyEu1XErJtTIIvvgH3OelJPRmORVMKYXBbYk4Qb7kWgsEe8CHuXJrGbVr1HbN0a45WtPbu6gtQ9mXk6zAAfxZA7j2uUC1R9s5wXC7xWI9SjsXsTjWYe2CWi6MvZknHPby3qir3o2hYPqxnofqTnSGScTenzDAdI8Riq0-An7UEAv42Q45_t_0X-_Qq8E</recordid><startdate>19890725</startdate><enddate>19890725</enddate><creator>Rubin, Paul A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890725</creationdate><title>Evaluating the maximize minimum distance formulation of the linear discriminant problem</title><author>Rubin, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Discriminant analysis</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Maximization</topic><topic>Minimization</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Statistical analysis</topic><topic>statistics</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubin, Paul A.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubin, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the maximize minimum distance formulation of the linear discriminant problem</atitle><jtitle>European journal of operational research</jtitle><date>1989-07-25</date><risdate>1989</risdate><volume>41</volume><issue>2</issue><spage>240</spage><epage>248</epage><pages>240-248</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(89)90390-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1989-07, Vol.41 (2), p.240-248 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_25552768 |
source | Backfile Package - Decision Sciences [YDT] |
subjects | Applied sciences Discriminant analysis Exact sciences and technology Linear programming Mathematical models Mathematical programming Maximization Minimization Operational research and scientific management Operational research. Management science Operations research Statistical analysis statistics Theory |
title | Evaluating the maximize minimum distance formulation of the linear discriminant problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20maximize%20minimum%20distance%20formulation%20of%20the%20linear%20discriminant%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Rubin,%20Paul%20A.&rft.date=1989-07-25&rft.volume=41&rft.issue=2&rft.spage=240&rft.epage=248&rft.pages=240-248&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(89)90390-1&rft_dat=%3Cproquest_cross%3E25552768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204166690&rft_id=info:pmid/&rfr_iscdi=true |