Loading…

Evaluating the maximize minimum distance formulation of the linear discriminant problem

The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametr...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 1989-07, Vol.41 (2), p.240-248
Main Author: Rubin, Paul A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3
cites cdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3
container_end_page 248
container_issue 2
container_start_page 240
container_title European journal of operational research
container_volume 41
creator Rubin, Paul A.
description The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.
doi_str_mv 10.1016/0377-2217(89)90390-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25552768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221789903901</els_id><sourcerecordid>25552768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMo2Lb-AxeFiOiiNEnlVRthGMYXA24UlyGdunHSVCVtUtU4_npvTQ-9cGHg5mbxnZuTE0KeM_qWUabe0U7rlnOmX5v-TU-7nrbsAdkwo3mrjKIPyeaMPCZPat1TSplkckN-XB3duLg5pp_NfAPN5H7HKf7BQ0xxWqZmiHV2yUMTcpmWEcmcmhzu4DEmcGVFfEFVcmluDiXvRpiekkfBjRWe3fct-f7h6tvlp_b668fPlxfXrRfSzK3uVOAa6KDAcCqF94EJKXcQTKe84coH30uh3E7RQfdGmSB7FrTknu0AfLclr05z8d5fC9TZTugGxtElyEu1XErJtTIIvvgH3OelJPRmORVMKYXBbYk4Qb7kWgsEe8CHuXJrGbVr1HbN0a45WtPbu6gtQ9mXk6zAAfxZA7j2uUC1R9s5wXC7xWI9SjsXsTjWYe2CWi6MvZknHPby3qir3o2hYPqxnofqTnSGScTenzDAdI8Riq0-An7UEAv42Q45_t_0X-_Qq8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204166690</pqid></control><display><type>article</type><title>Evaluating the maximize minimum distance formulation of the linear discriminant problem</title><source>Backfile Package - Decision Sciences [YDT]</source><creator>Rubin, Paul A.</creator><creatorcontrib>Rubin, Paul A.</creatorcontrib><description>The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(89)90390-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Discriminant analysis ; Exact sciences and technology ; Linear programming ; Mathematical models ; Mathematical programming ; Maximization ; Minimization ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Statistical analysis ; statistics ; Theory</subject><ispartof>European journal of operational research, 1989-07, Vol.41 (2), p.240-248</ispartof><rights>1989</rights><rights>1989 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 25, 1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</citedby><cites>FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0377221789903901$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3440,27924,27925,45991</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7343815$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a41_3ay_3a1989_3ai_3a2_3ap_3a240-248.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubin, Paul A.</creatorcontrib><title>Evaluating the maximize minimum distance formulation of the linear discriminant problem</title><title>European journal of operational research</title><description>The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.</description><subject>Applied sciences</subject><subject>Discriminant analysis</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Maximization</subject><subject>Minimization</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Statistical analysis</subject><subject>statistics</subject><subject>Theory</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMo2Lb-AxeFiOiiNEnlVRthGMYXA24UlyGdunHSVCVtUtU4_npvTQ-9cGHg5mbxnZuTE0KeM_qWUabe0U7rlnOmX5v-TU-7nrbsAdkwo3mrjKIPyeaMPCZPat1TSplkckN-XB3duLg5pp_NfAPN5H7HKf7BQ0xxWqZmiHV2yUMTcpmWEcmcmhzu4DEmcGVFfEFVcmluDiXvRpiekkfBjRWe3fct-f7h6tvlp_b668fPlxfXrRfSzK3uVOAa6KDAcCqF94EJKXcQTKe84coH30uh3E7RQfdGmSB7FrTknu0AfLclr05z8d5fC9TZTugGxtElyEu1XErJtTIIvvgH3OelJPRmORVMKYXBbYk4Qb7kWgsEe8CHuXJrGbVr1HbN0a45WtPbu6gtQ9mXk6zAAfxZA7j2uUC1R9s5wXC7xWI9SjsXsTjWYe2CWi6MvZknHPby3qir3o2hYPqxnofqTnSGScTenzDAdI8Riq0-An7UEAv42Q45_t_0X-_Qq8E</recordid><startdate>19890725</startdate><enddate>19890725</enddate><creator>Rubin, Paul A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890725</creationdate><title>Evaluating the maximize minimum distance formulation of the linear discriminant problem</title><author>Rubin, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Discriminant analysis</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Maximization</topic><topic>Minimization</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Statistical analysis</topic><topic>statistics</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubin, Paul A.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubin, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the maximize minimum distance formulation of the linear discriminant problem</atitle><jtitle>European journal of operational research</jtitle><date>1989-07-25</date><risdate>1989</risdate><volume>41</volume><issue>2</issue><spage>240</spage><epage>248</epage><pages>240-248</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The ‘maximize minimum distance’ (MMD) linear programming model for the two group discriminant problem has been noted to produce occasionally a trivial (identically zero) discriminant function, one which classifies all observations into a single category. In tests against other methods, both parametric and nonparametric, MMD has fared poorly. In this paper, we attribute the propensity of the MMD model to produce trivial solutions to a specific aspect of its formulation; this same facet may also cause unnessarily high misclassification rates even when a nontrivial function is found. We note a simple revision of a model which ensures an acceptable solution in those instancesin which the calibration samples can be classified with 100% accuracy by a single function. This rises the question of whether the inferior performance of MMD in previous studies was due to inherent limitations in MMD, or to the particular formulation used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(89)90390-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1989-07, Vol.41 (2), p.240-248
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_25552768
source Backfile Package - Decision Sciences [YDT]
subjects Applied sciences
Discriminant analysis
Exact sciences and technology
Linear programming
Mathematical models
Mathematical programming
Maximization
Minimization
Operational research and scientific management
Operational research. Management science
Operations research
Statistical analysis
statistics
Theory
title Evaluating the maximize minimum distance formulation of the linear discriminant problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20maximize%20minimum%20distance%20formulation%20of%20the%20linear%20discriminant%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Rubin,%20Paul%20A.&rft.date=1989-07-25&rft.volume=41&rft.issue=2&rft.spage=240&rft.epage=248&rft.pages=240-248&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(89)90390-1&rft_dat=%3Cproquest_cross%3E25552768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-736f27e0d6e82054ccf1455bef836c826cfc9546ab60d79868f591f752c1beec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204166690&rft_id=info:pmid/&rfr_iscdi=true