Loading…
Design of Microchannel Suitable for Packing with Anion Exchange Resins: Uranium Separation from Seawater Containing a Large Amount of Cesium
We present a resin-packed microchannel that can reduce the radiation exposure risk and secondary radioactive wastes during uranium (U) separation by downscaling the separation using a microchip. Two types of microchips were designed to densely pack the microchannels with resins. The microchannels ha...
Saved in:
Published in: | Analytical Sciences 2021/12/10, Vol.37(12), pp.1789-1794 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a resin-packed microchannel that can reduce the radiation exposure risk and secondary radioactive wastes during uranium (U) separation by downscaling the separation using a microchip. Two types of microchips were designed to densely pack the microchannels with resins. The microchannels had almost the same cross-sectional area, but different outer circumferences. A satisfactory separation performance could be obtained by arranging more than ca. 10 resins along the depth and width of the microchannels. A resin-packed microchannel is an effective separation technique for determining the U concentration via inductively coupled plasma mass spectrometry owing to its ability to avoid the contamination of equipment by cesium, and to reduce the matrix effect. The size of the separation site was scaled down to |
---|---|
ISSN: | 0910-6340 1348-2246 |
DOI: | 10.2116/analsci.21P110 |