Loading…

Top predator introduction changes the effects of spatial isolation on freshwater community structure

Current conceptual metacommunity models predict that the consequences of local selective pressures on community structure increase with spatial isolation when species favored by local conditions also have higher dispersal rates. This appears to be the case of freshwater insects in the presence of fi...

Full description

Saved in:
Bibliographic Details
Published in:Ecology (Durham) 2021-11, Vol.102 (11), p.1-12
Main Authors: Pelinson, Rodolfo Mei, Leibold, Mathewa, Schiesari, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current conceptual metacommunity models predict that the consequences of local selective pressures on community structure increase with spatial isolation when species favored by local conditions also have higher dispersal rates. This appears to be the case of freshwater insects in the presence of fish. The introduction of predatory fish can produce trophic cascades in freshwater habitats because fish tend to prey upon intermediate predatory taxa, such as predatory insects, indirectly benefiting herbivores and detritivores. Similarly, spatial isolation can limit dispersal and colonization rates of predatory insects more strongly than of herbivores and detritivores, thus generating similar cascading effects. Here we tested the hypothesis that the effect of introduced predatory fish on insect community structure increases with spatial isolation by conducting a field experiment in artificial ponds that manipulated the presence/absence of fish (the redbreast tilapia) at three different distances from a source wetland. Our results showed that fish have direct negative effects on the abundance of predatory insects but probably have variable net effects on the abundance of herbivores and detritivores because the direct negative effects of predation by fish may offset indirect positive ones. Spatial isolation also resulted in indirect positive effects on the abundance of herbivores and detritivores but this effect was stronger in the absence rather than in the presence of fish so that insect communities diverged more strongly between fish and fishless ponds at higher spatial isolation. We argue that an important additional mechanism, ignored in our initial hypothesis, was that as spatial isolation increases fish predation pressure upon herbivores and detritivores increases due to the relative scarcity of predatory insects, thus dampening the positive effect that spatial isolation confers to lower trophic levels. Our results highlight the importance of considering interspecific variation in dispersal and multiple trophic levels to better understand the processes generating community and metacommunity patterns.
ISSN:0012-9658
1939-9170
DOI:10.1002/ecy.3500