Loading…
Treatment of the actual landfill leachate in different constructed wetlands through intermittent and varied aeration mode
This study focused on the removal of organic matter and nitrogen and explored the feasible operation strategies to achieve short-cut nitrification and denitrification in two constructed wetlands (CWs), which were designed to treat the actual landfill leachate from a small county in parallel. The two...
Saved in:
Published in: | Environmental science and pollution research international 2021-12, Vol.28 (45), p.64858-64870 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focused on the removal of organic matter and nitrogen and explored the feasible operation strategies to achieve short-cut nitrification and denitrification in two constructed wetlands (CWs), which were designed to treat the actual landfill leachate from a small county in parallel. The two CWs were horizontal sub-surface flow constructed wetlands (HFCW) with partial-area aeration and vertical sub-surface flow constructed wetlands (VFCW) with full-area aeration. The experimental results showed that both CWs could achieve an excellent organic matter and nitrogen removal performance under the conditions of intermittent aeration with high frequency and medium intensity (2 h of aeration and 4 h of rest). The removal efficiencies of COD and total nitrogen by HFCW were 89.08% and 73.22%, and the corresponding values of VFCW were 84.51% and 71.44%, respectively. Meanwhile, the inhibition kinetics model indicated that HFCW with partial-area aeration could enhance the free ammonium (FA) tolerance of ammonium-oxidizing bacteria (AOB) and reduce the conversion percentage of ammonia nitrogen. In addition, the intermittent aeration mode with high frequency and medium intensity could keep the DO concentration below under 0.60 mg L
−1
in HFCW, which helped to achieve stable short-cut nitrification and ensure the average nitrite accumulation rate (NAR) reach 50.96%. These results suggested that the intermittent aeration in partial-area could achieve successful short-cut nitrification in HFCW, thereby improving the removal efficiency of nitrogen in landfill leachate.
Graphical abstract |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-15216-3 |