Loading…

Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries

Aqueous zinc-ion batteries (ZIBs) with cost-effective and safe features are highly competitive in grid energy storage applications, but plagued by the sluggish Zn2+ diffusion kinetics and poor cyclability of cathodes. Herein, a one-stone-two-birds strategy of La3+ incorporation (La–V2O5) is develope...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-08, Vol.13 (32), p.38416-38424
Main Authors: Zhang, Dongdong, Cao, Jin, Yue, Yilei, Pakornchote, Teerachote, Bovornratanaraks, Thiti, Han, Jiantao, Zhang, Xinyu, Qin, Jiaqian, Huang, Yunhui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 38424
container_issue 32
container_start_page 38416
container_title ACS applied materials & interfaces
container_volume 13
creator Zhang, Dongdong
Cao, Jin
Yue, Yilei
Pakornchote, Teerachote
Bovornratanaraks, Thiti
Han, Jiantao
Zhang, Xinyu
Qin, Jiaqian
Huang, Yunhui
description Aqueous zinc-ion batteries (ZIBs) with cost-effective and safe features are highly competitive in grid energy storage applications, but plagued by the sluggish Zn2+ diffusion kinetics and poor cyclability of cathodes. Herein, a one-stone-two-birds strategy of La3+ incorporation (La–V2O5) is developed to motivate Zn2+ insertion/extraction kinetics and stabilize vanadium species for V2O5. Theoretical and experimental studies reveal the incorporated La3+ ions in V2O5 can not only serve as pillars to expand the interlayer distance (11.77 Å) and lower the Zn2+ migration energy barrier (0.82 eV) but also offer intermediated level and narrower band gap (0.54 eV), thus accelerating the electron/ion diffusion kinetics. Importantly, the steadily doped La3+ ions effectively stabilize the V–O bonds by shortening the bond length, thereby inhibiting vanadium species dissolution. Therefore, the resulting La–V2O5-ZIBs deliver an exceptional rate capacity of 405 mA h g–1 (0.1 A g–1), long-term stability with 93.8% retention after 5000 cycles (10 A g–1), and extraordinary energy density of 289.3 W h kg–1, outperforming various metal-ions-doped V2O5 cathodes. Moreover, the La–V2O5 pouch cell presents excellent electrochemical performance and impressive flexibility and integration ability. The strategies of incorporating rare-earth-metal ions provide guidance to other well-established aqueous ZIBs cathodes and other advanced electrochemical devices.
doi_str_mv 10.1021/acsami.1c11531
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2557534272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557534272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-d331daebd80e69f31077545fead537342a02afea6e57446411c10115f6e7fbb03</originalsourceid><addsrcrecordid>eNpFUU1PwzAMrRBIjI8r5xwRqJDPFrixMWBi0g7ADlwqr3EhqEtGkm78LH4iGUNwsi0_P9vvZdkRo2eMcnYOdYC5OWM1Y0qwrazHLqXML7ji23-5lLvZXgjvlBaCU9XLvp5WjvSN14GsTHwjE4vkMTqLV6TvXIjGvpIXY-t85CwZ2YA-GmfPh5_RQ71OyYOxGE0dCFhNHrvFwmMI67EpWNCmm5MbE4Jrux-0a8iUTxRZGiBjEKeJs3Z-4Tz8tIcWZi2Sa70EW6P-X92HGNEbDAfZTgNtwMPfuJ893w6fBvf5eHI3GlyPc0jfx1wLwTTgTF9QLC4bwWhZKqkaBK1EKSQHyiFVBapSykKyJBtNwjUFls1sRsV-drzhXXj30WGI1dyEGtsWLLouVFypUiWekifoyQaaHKjeXedtOqxitFrbUm1sqX5tEd_Y6YNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557534272</pqid></control><display><type>article</type><title>Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Dongdong ; Cao, Jin ; Yue, Yilei ; Pakornchote, Teerachote ; Bovornratanaraks, Thiti ; Han, Jiantao ; Zhang, Xinyu ; Qin, Jiaqian ; Huang, Yunhui</creator><creatorcontrib>Zhang, Dongdong ; Cao, Jin ; Yue, Yilei ; Pakornchote, Teerachote ; Bovornratanaraks, Thiti ; Han, Jiantao ; Zhang, Xinyu ; Qin, Jiaqian ; Huang, Yunhui</creatorcontrib><description>Aqueous zinc-ion batteries (ZIBs) with cost-effective and safe features are highly competitive in grid energy storage applications, but plagued by the sluggish Zn2+ diffusion kinetics and poor cyclability of cathodes. Herein, a one-stone-two-birds strategy of La3+ incorporation (La–V2O5) is developed to motivate Zn2+ insertion/extraction kinetics and stabilize vanadium species for V2O5. Theoretical and experimental studies reveal the incorporated La3+ ions in V2O5 can not only serve as pillars to expand the interlayer distance (11.77 Å) and lower the Zn2+ migration energy barrier (0.82 eV) but also offer intermediated level and narrower band gap (0.54 eV), thus accelerating the electron/ion diffusion kinetics. Importantly, the steadily doped La3+ ions effectively stabilize the V–O bonds by shortening the bond length, thereby inhibiting vanadium species dissolution. Therefore, the resulting La–V2O5-ZIBs deliver an exceptional rate capacity of 405 mA h g–1 (0.1 A g–1), long-term stability with 93.8% retention after 5000 cycles (10 A g–1), and extraordinary energy density of 289.3 W h kg–1, outperforming various metal-ions-doped V2O5 cathodes. Moreover, the La–V2O5 pouch cell presents excellent electrochemical performance and impressive flexibility and integration ability. The strategies of incorporating rare-earth-metal ions provide guidance to other well-established aqueous ZIBs cathodes and other advanced electrochemical devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c11531</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-08, Vol.13 (32), p.38416-38424</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0330-1231 ; 0000-0002-9509-3785 ; 0000-0001-6943-4032 ; 0000-0002-9166-3533 ; 0000-0003-1687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Cao, Jin</creatorcontrib><creatorcontrib>Yue, Yilei</creatorcontrib><creatorcontrib>Pakornchote, Teerachote</creatorcontrib><creatorcontrib>Bovornratanaraks, Thiti</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Qin, Jiaqian</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Aqueous zinc-ion batteries (ZIBs) with cost-effective and safe features are highly competitive in grid energy storage applications, but plagued by the sluggish Zn2+ diffusion kinetics and poor cyclability of cathodes. Herein, a one-stone-two-birds strategy of La3+ incorporation (La–V2O5) is developed to motivate Zn2+ insertion/extraction kinetics and stabilize vanadium species for V2O5. Theoretical and experimental studies reveal the incorporated La3+ ions in V2O5 can not only serve as pillars to expand the interlayer distance (11.77 Å) and lower the Zn2+ migration energy barrier (0.82 eV) but also offer intermediated level and narrower band gap (0.54 eV), thus accelerating the electron/ion diffusion kinetics. Importantly, the steadily doped La3+ ions effectively stabilize the V–O bonds by shortening the bond length, thereby inhibiting vanadium species dissolution. Therefore, the resulting La–V2O5-ZIBs deliver an exceptional rate capacity of 405 mA h g–1 (0.1 A g–1), long-term stability with 93.8% retention after 5000 cycles (10 A g–1), and extraordinary energy density of 289.3 W h kg–1, outperforming various metal-ions-doped V2O5 cathodes. Moreover, the La–V2O5 pouch cell presents excellent electrochemical performance and impressive flexibility and integration ability. The strategies of incorporating rare-earth-metal ions provide guidance to other well-established aqueous ZIBs cathodes and other advanced electrochemical devices.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFUU1PwzAMrRBIjI8r5xwRqJDPFrixMWBi0g7ADlwqr3EhqEtGkm78LH4iGUNwsi0_P9vvZdkRo2eMcnYOdYC5OWM1Y0qwrazHLqXML7ji23-5lLvZXgjvlBaCU9XLvp5WjvSN14GsTHwjE4vkMTqLV6TvXIjGvpIXY-t85CwZ2YA-GmfPh5_RQ71OyYOxGE0dCFhNHrvFwmMI67EpWNCmm5MbE4Jrux-0a8iUTxRZGiBjEKeJs3Z-4Tz8tIcWZi2Sa70EW6P-X92HGNEbDAfZTgNtwMPfuJ893w6fBvf5eHI3GlyPc0jfx1wLwTTgTF9QLC4bwWhZKqkaBK1EKSQHyiFVBapSykKyJBtNwjUFls1sRsV-drzhXXj30WGI1dyEGtsWLLouVFypUiWekifoyQaaHKjeXedtOqxitFrbUm1sqX5tEd_Y6YNq</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Zhang, Dongdong</creator><creator>Cao, Jin</creator><creator>Yue, Yilei</creator><creator>Pakornchote, Teerachote</creator><creator>Bovornratanaraks, Thiti</creator><creator>Han, Jiantao</creator><creator>Zhang, Xinyu</creator><creator>Qin, Jiaqian</creator><creator>Huang, Yunhui</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0330-1231</orcidid><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid><orcidid>https://orcid.org/0000-0001-6943-4032</orcidid><orcidid>https://orcid.org/0000-0002-9166-3533</orcidid><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></search><sort><creationdate>20210818</creationdate><title>Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries</title><author>Zhang, Dongdong ; Cao, Jin ; Yue, Yilei ; Pakornchote, Teerachote ; Bovornratanaraks, Thiti ; Han, Jiantao ; Zhang, Xinyu ; Qin, Jiaqian ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-d331daebd80e69f31077545fead537342a02afea6e57446411c10115f6e7fbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Cao, Jin</creatorcontrib><creatorcontrib>Yue, Yilei</creatorcontrib><creatorcontrib>Pakornchote, Teerachote</creatorcontrib><creatorcontrib>Bovornratanaraks, Thiti</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Qin, Jiaqian</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongdong</au><au>Cao, Jin</au><au>Yue, Yilei</au><au>Pakornchote, Teerachote</au><au>Bovornratanaraks, Thiti</au><au>Han, Jiantao</au><au>Zhang, Xinyu</au><au>Qin, Jiaqian</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-08-18</date><risdate>2021</risdate><volume>13</volume><issue>32</issue><spage>38416</spage><epage>38424</epage><pages>38416-38424</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Aqueous zinc-ion batteries (ZIBs) with cost-effective and safe features are highly competitive in grid energy storage applications, but plagued by the sluggish Zn2+ diffusion kinetics and poor cyclability of cathodes. Herein, a one-stone-two-birds strategy of La3+ incorporation (La–V2O5) is developed to motivate Zn2+ insertion/extraction kinetics and stabilize vanadium species for V2O5. Theoretical and experimental studies reveal the incorporated La3+ ions in V2O5 can not only serve as pillars to expand the interlayer distance (11.77 Å) and lower the Zn2+ migration energy barrier (0.82 eV) but also offer intermediated level and narrower band gap (0.54 eV), thus accelerating the electron/ion diffusion kinetics. Importantly, the steadily doped La3+ ions effectively stabilize the V–O bonds by shortening the bond length, thereby inhibiting vanadium species dissolution. Therefore, the resulting La–V2O5-ZIBs deliver an exceptional rate capacity of 405 mA h g–1 (0.1 A g–1), long-term stability with 93.8% retention after 5000 cycles (10 A g–1), and extraordinary energy density of 289.3 W h kg–1, outperforming various metal-ions-doped V2O5 cathodes. Moreover, the La–V2O5 pouch cell presents excellent electrochemical performance and impressive flexibility and integration ability. The strategies of incorporating rare-earth-metal ions provide guidance to other well-established aqueous ZIBs cathodes and other advanced electrochemical devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c11531</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0330-1231</orcidid><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid><orcidid>https://orcid.org/0000-0001-6943-4032</orcidid><orcidid>https://orcid.org/0000-0002-9166-3533</orcidid><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-08, Vol.13 (32), p.38416-38424
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2557534272
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Birds%20with%20One%20Stone:%20Boosting%20Zinc-Ion%20Insertion/Extraction%20Kinetics%20and%20Suppressing%20Vanadium%20Dissolution%20of%20V2O5%20via%20La3+%20Incorporation%20Enable%20Advanced%20Zinc-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Dongdong&rft.date=2021-08-18&rft.volume=13&rft.issue=32&rft.spage=38416&rft.epage=38424&rft.pages=38416-38424&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c11531&rft_dat=%3Cproquest_acs_j%3E2557534272%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-d331daebd80e69f31077545fead537342a02afea6e57446411c10115f6e7fbb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557534272&rft_id=info:pmid/&rfr_iscdi=true