Loading…
Novel biotechnologies for nitrogen removal and their coupling with gas emissions abatement in wastewater treatment facilities
Wastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewat...
Saved in:
Published in: | The Science of the total environment 2021-11, Vol.797, p.149228-149228, Article 149228 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewater treatment facilities (WWTF) combining nitrification and denitrification, and lately partial nitrification coupled to anaerobic ammonium oxidation (anammox), have traditionally been applied for the removal of nitrogen from wastewaters. The present work provides a comprehensive review of the recent biotechnologies developed in which nitrogen-removing processes are relevant for the treatment of both wastewaters and gas emissions. These novel processes include the anammox process with alternative electron acceptors, such as sulfate (sulfammox), ferric iron (feammox), and anodes in microbial electrolysis cells (anodic anammox). New technologies that couple nitrate/nitrite reduction with the oxidation of methane, H2S, volatile methyl siloxanes, and other volatile organic compounds are also described. The potential of these processes for (i) minimizing greenhouse gas emissions from WWTF, (ii) biogas purification, and (iii) air pollution control is critically discussed considering the factors that might trigger N2O release during nitrate/nitrite reduction. Moreover, this review provides a discussion on the main challenges to tackle towards the consolidation of these novel biotechnologies.
[Display omitted]
•The latest nitrogen removal biotechnologies and their capabilities are addressed.•Novel Anammox process with alternative electron acceptors are described.•New denitrifying processes using gas pollutants as electron donors are reviewed.•Challenges to tackle for consolidating the technologies presented are discussed. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.149228 |