Loading…

Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry

The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potent...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2021-08, Vol.143 (32), p.12428-12432
Main Authors: Lu, Si-Min, Chen, Jian-Fu, Peng, Yue-Yi, Ma, Wei, Ma, Hui, Wang, Hai-Feng, Hu, Peijun, Long, Yi-Tao
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803
cites cdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803
container_end_page 12432
container_issue 32
container_start_page 12428
container_title Journal of the American Chemical Society
container_volume 143
creator Lu, Si-Min
Chen, Jian-Fu
Peng, Yue-Yi
Ma, Wei
Ma, Hui
Wang, Hai-Feng
Hu, Peijun
Long, Yi-Tao
description The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.
doi_str_mv 10.1021/jacs.1c02588
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2558454803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558454803</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMaOMDKT4Mx8jagtUqgQSdI4c50JTJXaxnaH_PQ4tsLDc6aTfe0_3ELomeEowJfdbqdyUKExFlp2gMREUx4LQ5BSNMcY0TrOEjdCFc9twcpqRczRinPGUi3yM_FpXYJ2Xumr0R-Q3EM33WnaNil6NB-0b2UbzxnnblL1vjI6k_6YWLShvTQXRUnuwtVQQlfvozRu1kc4H_cy0beMGyZFVG-gGp_0lOqtl6-DquCdo_bh4nz3Hq5en5exhFUtGuY9LVmYizSusFBYMeM2BJCmjrMxLleMkT2RaMZVTgVMFeRiMc4whzXBAM8wm6Pbgu7Pmswfni5CvoG2lBtO7ggqRccEDGdC7A6qscc5CXexs00m7Lwguhp6Loefi2HPAb47OfdlB9Qv_FPsXPai2prc6PPq_1xfkLYey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558454803</pqid></control><display><type>article</type><title>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lu, Si-Min ; Chen, Jian-Fu ; Peng, Yue-Yi ; Ma, Wei ; Ma, Hui ; Wang, Hai-Feng ; Hu, Peijun ; Long, Yi-Tao</creator><creatorcontrib>Lu, Si-Min ; Chen, Jian-Fu ; Peng, Yue-Yi ; Ma, Wei ; Ma, Hui ; Wang, Hai-Feng ; Hu, Peijun ; Long, Yi-Tao</creatorcontrib><description>The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c02588</identifier><identifier>PMID: 34347459</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12428-12432</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</citedby><cites>FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</cites><orcidid>0000-0002-6318-1051 ; 0000-0002-0488-6844 ; 0000-0003-0916-0150 ; 0000-0003-2571-7457 ; 0000-0002-6138-5800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34347459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Si-Min</creatorcontrib><creatorcontrib>Chen, Jian-Fu</creatorcontrib><creatorcontrib>Peng, Yue-Yi</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Wang, Hai-Feng</creatorcontrib><creatorcontrib>Hu, Peijun</creatorcontrib><creatorcontrib>Long, Yi-Tao</creatorcontrib><title>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkL1PwzAQxS0EoqWwMaOMDKT4Mx8jagtUqgQSdI4c50JTJXaxnaH_PQ4tsLDc6aTfe0_3ELomeEowJfdbqdyUKExFlp2gMREUx4LQ5BSNMcY0TrOEjdCFc9twcpqRczRinPGUi3yM_FpXYJ2Xumr0R-Q3EM33WnaNil6NB-0b2UbzxnnblL1vjI6k_6YWLShvTQXRUnuwtVQQlfvozRu1kc4H_cy0beMGyZFVG-gGp_0lOqtl6-DquCdo_bh4nz3Hq5en5exhFUtGuY9LVmYizSusFBYMeM2BJCmjrMxLleMkT2RaMZVTgVMFeRiMc4whzXBAM8wm6Pbgu7Pmswfni5CvoG2lBtO7ggqRccEDGdC7A6qscc5CXexs00m7Lwguhp6Loefi2HPAb47OfdlB9Qv_FPsXPai2prc6PPq_1xfkLYey</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Lu, Si-Min</creator><creator>Chen, Jian-Fu</creator><creator>Peng, Yue-Yi</creator><creator>Ma, Wei</creator><creator>Ma, Hui</creator><creator>Wang, Hai-Feng</creator><creator>Hu, Peijun</creator><creator>Long, Yi-Tao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6318-1051</orcidid><orcidid>https://orcid.org/0000-0002-0488-6844</orcidid><orcidid>https://orcid.org/0000-0003-0916-0150</orcidid><orcidid>https://orcid.org/0000-0003-2571-7457</orcidid><orcidid>https://orcid.org/0000-0002-6138-5800</orcidid></search><sort><creationdate>20210818</creationdate><title>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</title><author>Lu, Si-Min ; Chen, Jian-Fu ; Peng, Yue-Yi ; Ma, Wei ; Ma, Hui ; Wang, Hai-Feng ; Hu, Peijun ; Long, Yi-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Si-Min</creatorcontrib><creatorcontrib>Chen, Jian-Fu</creatorcontrib><creatorcontrib>Peng, Yue-Yi</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Wang, Hai-Feng</creatorcontrib><creatorcontrib>Hu, Peijun</creatorcontrib><creatorcontrib>Long, Yi-Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Si-Min</au><au>Chen, Jian-Fu</au><au>Peng, Yue-Yi</au><au>Ma, Wei</au><au>Ma, Hui</au><au>Wang, Hai-Feng</au><au>Hu, Peijun</au><au>Long, Yi-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-18</date><risdate>2021</risdate><volume>143</volume><issue>32</issue><spage>12428</spage><epage>12432</epage><pages>12428-12432</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34347459</pmid><doi>10.1021/jacs.1c02588</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6318-1051</orcidid><orcidid>https://orcid.org/0000-0002-0488-6844</orcidid><orcidid>https://orcid.org/0000-0003-0916-0150</orcidid><orcidid>https://orcid.org/0000-0003-2571-7457</orcidid><orcidid>https://orcid.org/0000-0002-6138-5800</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12428-12432
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2558454803
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Dynamic%20Potential%20Distribution%20at%20the%20Electrode%20Interface%20by%20Stochastic%20Collision%20Electrochemistry&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lu,%20Si-Min&rft.date=2021-08-18&rft.volume=143&rft.issue=32&rft.spage=12428&rft.epage=12432&rft.pages=12428-12432&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c02588&rft_dat=%3Cproquest_cross%3E2558454803%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558454803&rft_id=info:pmid/34347459&rfr_iscdi=true