Loading…
Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry
The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potent...
Saved in:
Published in: | Journal of the American Chemical Society 2021-08, Vol.143 (32), p.12428-12432 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803 |
---|---|
cites | cdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803 |
container_end_page | 12432 |
container_issue | 32 |
container_start_page | 12428 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Lu, Si-Min Chen, Jian-Fu Peng, Yue-Yi Ma, Wei Ma, Hui Wang, Hai-Feng Hu, Peijun Long, Yi-Tao |
description | The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale. |
doi_str_mv | 10.1021/jacs.1c02588 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2558454803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558454803</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMaOMDKT4Mx8jagtUqgQSdI4c50JTJXaxnaH_PQ4tsLDc6aTfe0_3ELomeEowJfdbqdyUKExFlp2gMREUx4LQ5BSNMcY0TrOEjdCFc9twcpqRczRinPGUi3yM_FpXYJ2Xumr0R-Q3EM33WnaNil6NB-0b2UbzxnnblL1vjI6k_6YWLShvTQXRUnuwtVQQlfvozRu1kc4H_cy0beMGyZFVG-gGp_0lOqtl6-DquCdo_bh4nz3Hq5en5exhFUtGuY9LVmYizSusFBYMeM2BJCmjrMxLleMkT2RaMZVTgVMFeRiMc4whzXBAM8wm6Pbgu7Pmswfni5CvoG2lBtO7ggqRccEDGdC7A6qscc5CXexs00m7Lwguhp6Loefi2HPAb47OfdlB9Qv_FPsXPai2prc6PPq_1xfkLYey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558454803</pqid></control><display><type>article</type><title>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lu, Si-Min ; Chen, Jian-Fu ; Peng, Yue-Yi ; Ma, Wei ; Ma, Hui ; Wang, Hai-Feng ; Hu, Peijun ; Long, Yi-Tao</creator><creatorcontrib>Lu, Si-Min ; Chen, Jian-Fu ; Peng, Yue-Yi ; Ma, Wei ; Ma, Hui ; Wang, Hai-Feng ; Hu, Peijun ; Long, Yi-Tao</creatorcontrib><description>The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c02588</identifier><identifier>PMID: 34347459</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12428-12432</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</citedby><cites>FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</cites><orcidid>0000-0002-6318-1051 ; 0000-0002-0488-6844 ; 0000-0003-0916-0150 ; 0000-0003-2571-7457 ; 0000-0002-6138-5800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34347459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Si-Min</creatorcontrib><creatorcontrib>Chen, Jian-Fu</creatorcontrib><creatorcontrib>Peng, Yue-Yi</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Wang, Hai-Feng</creatorcontrib><creatorcontrib>Hu, Peijun</creatorcontrib><creatorcontrib>Long, Yi-Tao</creatorcontrib><title>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkL1PwzAQxS0EoqWwMaOMDKT4Mx8jagtUqgQSdI4c50JTJXaxnaH_PQ4tsLDc6aTfe0_3ELomeEowJfdbqdyUKExFlp2gMREUx4LQ5BSNMcY0TrOEjdCFc9twcpqRczRinPGUi3yM_FpXYJ2Xumr0R-Q3EM33WnaNil6NB-0b2UbzxnnblL1vjI6k_6YWLShvTQXRUnuwtVQQlfvozRu1kc4H_cy0beMGyZFVG-gGp_0lOqtl6-DquCdo_bh4nz3Hq5en5exhFUtGuY9LVmYizSusFBYMeM2BJCmjrMxLleMkT2RaMZVTgVMFeRiMc4whzXBAM8wm6Pbgu7Pmswfni5CvoG2lBtO7ggqRccEDGdC7A6qscc5CXexs00m7Lwguhp6Loefi2HPAb47OfdlB9Qv_FPsXPai2prc6PPq_1xfkLYey</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Lu, Si-Min</creator><creator>Chen, Jian-Fu</creator><creator>Peng, Yue-Yi</creator><creator>Ma, Wei</creator><creator>Ma, Hui</creator><creator>Wang, Hai-Feng</creator><creator>Hu, Peijun</creator><creator>Long, Yi-Tao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6318-1051</orcidid><orcidid>https://orcid.org/0000-0002-0488-6844</orcidid><orcidid>https://orcid.org/0000-0003-0916-0150</orcidid><orcidid>https://orcid.org/0000-0003-2571-7457</orcidid><orcidid>https://orcid.org/0000-0002-6138-5800</orcidid></search><sort><creationdate>20210818</creationdate><title>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</title><author>Lu, Si-Min ; Chen, Jian-Fu ; Peng, Yue-Yi ; Ma, Wei ; Ma, Hui ; Wang, Hai-Feng ; Hu, Peijun ; Long, Yi-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Si-Min</creatorcontrib><creatorcontrib>Chen, Jian-Fu</creatorcontrib><creatorcontrib>Peng, Yue-Yi</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Wang, Hai-Feng</creatorcontrib><creatorcontrib>Hu, Peijun</creatorcontrib><creatorcontrib>Long, Yi-Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Si-Min</au><au>Chen, Jian-Fu</au><au>Peng, Yue-Yi</au><au>Ma, Wei</au><au>Ma, Hui</au><au>Wang, Hai-Feng</au><au>Hu, Peijun</au><au>Long, Yi-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-18</date><risdate>2021</risdate><volume>143</volume><issue>32</issue><spage>12428</spage><epage>12432</epage><pages>12428-12432</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy–Chapman–Stern (G–C–S) model. Yet the G–C–S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34347459</pmid><doi>10.1021/jacs.1c02588</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6318-1051</orcidid><orcidid>https://orcid.org/0000-0002-0488-6844</orcidid><orcidid>https://orcid.org/0000-0003-0916-0150</orcidid><orcidid>https://orcid.org/0000-0003-2571-7457</orcidid><orcidid>https://orcid.org/0000-0002-6138-5800</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-08, Vol.143 (32), p.12428-12432 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2558454803 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Dynamic%20Potential%20Distribution%20at%20the%20Electrode%20Interface%20by%20Stochastic%20Collision%20Electrochemistry&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lu,%20Si-Min&rft.date=2021-08-18&rft.volume=143&rft.issue=32&rft.spage=12428&rft.epage=12432&rft.pages=12428-12432&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c02588&rft_dat=%3Cproquest_cross%3E2558454803%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-b3b8579d0cc053e4f4e167323b9bc90696a7d3c92507ce907c34400e780f4e803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558454803&rft_id=info:pmid/34347459&rfr_iscdi=true |