Loading…
Choice of power-supply voltage for half-micrometer and lower submicrometer CMOS devices
The tradeoff between circuit performance and reliability is theoretically and experimentally examined in detail, down to half-micrometer and lower submicrometer gate lengths, taking into account high-field effects on MOSFETs. Some guidelines for optimum power-supply voltage and process/device parame...
Saved in:
Published in: | IEEE transactions on electron devices 1990-05, Vol.37 (5), p.1334-1342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tradeoff between circuit performance and reliability is theoretically and experimentally examined in detail, down to half-micrometer and lower submicrometer gate lengths, taking into account high-field effects on MOSFETs. Some guidelines for optimum power-supply voltage and process/device parameters for half-micrometer and lower submicrometer CMOS devices are proposed in order to maintain MOS device reliability and achieve high circuit performance. It is shown that power-supply voltage must be reduced to maintain reliability and improved performance and that the optimum voltage reduction follows the square root of the design rule. Trends for scaling down power-supply voltage have been experimentally verified by results obtained from measurements on CMOS devices over a wide range of gate oxide thickness (7-45 nm) and gate lengths (0.3-2.0 mu m).< > |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.108196 |