Loading…

An Amphiphilic Carbonaceous/Nanosilver Composite-Incorporated Urinary Catheter for Long-Term Combating Bacteria and Biofilms

Biofilms formed on urinary catheters remain a major headache in the modern healthcare system. Among the various kinds of biocide-releasing urinary catheters that have been developed to prevent biofilm formation, Ag nanoparticles (AgNPs)-coated catheters are of great promising potential. However, the...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-08, Vol.13 (32), p.38029-38039
Main Authors: Liu, Chaoqun, Feng, Shan, Ma, Longyu, Sun, Mengyao, Wei, Zhihong, Wang, Jiaqi, Chen, Zhaowei, Guo, Yuheng, Shi, Jiahua, Wu, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biofilms formed on urinary catheters remain a major headache in the modern healthcare system. Among the various kinds of biocide-releasing urinary catheters that have been developed to prevent biofilm formation, Ag nanoparticles (AgNPs)-coated catheters are of great promising potential. However, the deposition of AgNPs on the surface of catheters suffers from several inherent shortcomings, such as damage to the urethral mucosa, uncontrollable Ag ion kinetics, and unexpected systematic toxicity. Here, AgNPs-decorated amphiphilic carbonaceous particles (ACPs@AgNPs) with commendable dispersity in solvents of different polarities and broad-spectrum antibacterial activity are first prepared. The resulting ACPs@AgNPs exert good compatibility with silicone rubber, which enables the easy fabrication of urinary catheters using a laboratory-made mold. Therefore, ACPs@AgNPs not only endow the urinary catheter with forceful biocidal activity but also improve its mechanical properties and surface wettability. Hence, the designed urinary catheter possesses excellent capacity to resist bacterial adhesion and biofilm formation both in vitro and in an in vivo rabbit model. Specifically, a long-term antibacterial study highlights its sustainable antibacterial activity. Of note, no obvious toxicity or inflammation in rabbits was triggered by the designed urinary catheter in vivo. Overall, the hybrid urinary catheter may serve as a promising biocide-releasing urinary catheter for antibacterial and antibiofilm applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c07399