Loading…

PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification

This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the I...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) 2021-11, Vol.234, p.122608-122608, Article 122608
Main Authors: Kaspi, Omer, Girshevitz, Olga, Senderowitz, Hanoch
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3
cites cdi_FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3
container_end_page 122608
container_issue
container_start_page 122608
container_title Talanta (Oxford)
container_volume 234
creator Kaspi, Omer
Girshevitz, Olga
Senderowitz, Hanoch
description This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (>80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more. [Display omitted] •A PIXE/machine learning-based model for classifying glass fragments was developed.•The workflow achieved >80% accuracy in classifying glass fragments to different car manufacturers.•The workflow performed well in a real world test case emulating a hit-and-run car accident.•Suggestions for workflow improvements were put forth.•The workflow could be extended to other problems of forensic relevance.
doi_str_mv 10.1016/j.talanta.2021.122608
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2559669237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914021005294</els_id><sourcerecordid>2559669237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QciygjPmMc-VSKlaGNGFgrgJaXJTU6eTMZla_PfOMN27uZfLPefA-RC6pCSmhGY3m7iTtWw6GTPCaEwZy0hxhCa0yHnE05wfowkhvIxKmpBTdBbChhDCOOET9PGyfF_glQygr_GTVJ-2gagC6RvbrPFs-FZXOOza1vkONN47_2Vqt8fGebyuZQjYeLneQtMFrIbbGqtkZ11zjk6MrANcHPYUvd0vXuePUfX8sJzfVZFiOesineSFLA3NIaElU5JDnvFEKr3qRyl5DoUq6YrzwkhCClBpoYDohHOmuE6AT9FszG29-95B6MTWBgV1jwTcLgiWpmWWlYznvTQdpcq7EDwY0Xq7lf5XUCIGlmIjDizFwFKMLHvf7eiDvsePBS-CstAo0NaD6oR29p-EPxTyf-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559669237</pqid></control><display><type>article</type><title>PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification</title><source>Elsevier</source><creator>Kaspi, Omer ; Girshevitz, Olga ; Senderowitz, Hanoch</creator><creatorcontrib>Kaspi, Omer ; Girshevitz, Olga ; Senderowitz, Hanoch</creatorcontrib><description>This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (&gt;80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more. [Display omitted] •A PIXE/machine learning-based model for classifying glass fragments was developed.•The workflow achieved &gt;80% accuracy in classifying glass fragments to different car manufacturers.•The workflow performed well in a real world test case emulating a hit-and-run car accident.•Suggestions for workflow improvements were put forth.•The workflow could be extended to other problems of forensic relevance.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2021.122608</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Forensic ; Forensoinformatics ; Glass fragments ; Machine Learning ; PIXE ; Random forest</subject><ispartof>Talanta (Oxford), 2021-11, Vol.234, p.122608-122608, Article 122608</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3</citedby><cites>FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3</cites><orcidid>0000-0003-0076-1355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kaspi, Omer</creatorcontrib><creatorcontrib>Girshevitz, Olga</creatorcontrib><creatorcontrib>Senderowitz, Hanoch</creatorcontrib><title>PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification</title><title>Talanta (Oxford)</title><description>This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (&gt;80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more. [Display omitted] •A PIXE/machine learning-based model for classifying glass fragments was developed.•The workflow achieved &gt;80% accuracy in classifying glass fragments to different car manufacturers.•The workflow performed well in a real world test case emulating a hit-and-run car accident.•Suggestions for workflow improvements were put forth.•The workflow could be extended to other problems of forensic relevance.</description><subject>Forensic</subject><subject>Forensoinformatics</subject><subject>Glass fragments</subject><subject>Machine Learning</subject><subject>PIXE</subject><subject>Random forest</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QciygjPmMc-VSKlaGNGFgrgJaXJTU6eTMZla_PfOMN27uZfLPefA-RC6pCSmhGY3m7iTtWw6GTPCaEwZy0hxhCa0yHnE05wfowkhvIxKmpBTdBbChhDCOOET9PGyfF_glQygr_GTVJ-2gagC6RvbrPFs-FZXOOza1vkONN47_2Vqt8fGebyuZQjYeLneQtMFrIbbGqtkZ11zjk6MrANcHPYUvd0vXuePUfX8sJzfVZFiOesineSFLA3NIaElU5JDnvFEKr3qRyl5DoUq6YrzwkhCClBpoYDohHOmuE6AT9FszG29-95B6MTWBgV1jwTcLgiWpmWWlYznvTQdpcq7EDwY0Xq7lf5XUCIGlmIjDizFwFKMLHvf7eiDvsePBS-CstAo0NaD6oR29p-EPxTyf-0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kaspi, Omer</creator><creator>Girshevitz, Olga</creator><creator>Senderowitz, Hanoch</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0076-1355</orcidid></search><sort><creationdate>20211101</creationdate><title>PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification</title><author>Kaspi, Omer ; Girshevitz, Olga ; Senderowitz, Hanoch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Forensic</topic><topic>Forensoinformatics</topic><topic>Glass fragments</topic><topic>Machine Learning</topic><topic>PIXE</topic><topic>Random forest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaspi, Omer</creatorcontrib><creatorcontrib>Girshevitz, Olga</creatorcontrib><creatorcontrib>Senderowitz, Hanoch</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaspi, Omer</au><au>Girshevitz, Olga</au><au>Senderowitz, Hanoch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification</atitle><jtitle>Talanta (Oxford)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>234</volume><spage>122608</spage><epage>122608</epage><pages>122608-122608</pages><artnum>122608</artnum><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (&gt;80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more. [Display omitted] •A PIXE/machine learning-based model for classifying glass fragments was developed.•The workflow achieved &gt;80% accuracy in classifying glass fragments to different car manufacturers.•The workflow performed well in a real world test case emulating a hit-and-run car accident.•Suggestions for workflow improvements were put forth.•The workflow could be extended to other problems of forensic relevance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.talanta.2021.122608</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0076-1355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2021-11, Vol.234, p.122608-122608, Article 122608
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_2559669237
source Elsevier
subjects Forensic
Forensoinformatics
Glass fragments
Machine Learning
PIXE
Random forest
title PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PIXE%20based,%20Machine-Learning%20(PIXEL)%20supported%20workflow%20for%20glass%20fragments%20classification&rft.jtitle=Talanta%20(Oxford)&rft.au=Kaspi,%20Omer&rft.date=2021-11-01&rft.volume=234&rft.spage=122608&rft.epage=122608&rft.pages=122608-122608&rft.artnum=122608&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2021.122608&rft_dat=%3Cproquest_cross%3E2559669237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-d478a9f17e4192ca3e7634acdb4ac9a37e8c91b338fa008ec58ce0d4332c3d4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559669237&rft_id=info:pmid/&rfr_iscdi=true