Loading…

The guardians of germ cells; Sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells

Nowadays, prolonged exposure to electromagnetic fields (EMF) has raised public concern about the detrimental potential of EMF on spermatogonial stem cells (SSCs) and spermatogenesis. Recent studies introduced the fundamental role of Sertoli cell paracrine signaling in the regulation of SSCs maintena...

Full description

Saved in:
Bibliographic Details
Published in:Theriogenology 2021-10, Vol.173, p.112-122
Main Authors: Salek, Farzaneh, Baharara, Javad, Shahrokhabadi, Khadije Nejad, Amini, Elaheh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays, prolonged exposure to electromagnetic fields (EMF) has raised public concern about the detrimental potential of EMF on spermatogonial stem cells (SSCs) and spermatogenesis. Recent studies introduced the fundamental role of Sertoli cell paracrine signaling in the regulation of SSCs maintenance and differentiation in fertility preservation. Thus we investigated the therapeutic effect of Sertoli-derived exosomes (Sertoli-EXOs) as powerful paracrine mediators in SSCs subjected to EMF and its underlying mechanisms. SSCs and Sertoli cells were isolated from neonate mice testis, and identified by their specific markers. Then SSCs were exposed to 50 Hz EMF with intensity of 2.5 mT (1 h for 5 days) and supplemented with exosomes that were isolated from pre-pubertal Sertoli cells. Sertoli-EXOs were characterized and the uptake was observed by PKH26 labeling. The cell viability, colonization efficiency, reactive oxygen species (ROS) balance, cell cycle arrest and apoptosis induction were then analysed. SSCs were confirmed by immunocytochemistry (Oct4, Plzf) and Sertoli cells were identified through Sox9 and vimentin expression by immunocytochemistry and Real-time PCR (qRT-PCR), respectively. Our results demonstrated the detrimental effect of EMF via ROS accumulation that reduced the expression of catalase antioxidant, cell viability and colonization of SSCs. Also, AO/PI and flow cytometry analysis demonstrated the elevation of apoptosis in SSCs exposed to EMF in comparison with control. qRT-PCR data confirmed the up-regulation of apoptotic gene (Caspase-3) and down-regulation of SSCs specific gene (GFRα1). Consequently, the administration of Sertoli-EXOs exerted ameliorative effect on SSCs and significantly improved these changes through the regulation of oxidative stress. These findings suggest that Sertoli-EXOs have positive impact on SSCs exposed to EMF and can be useful in further investigation of Sertoli-EXOs as a novel therapeutic agent which may recover the deregulated SSCs microenvironment and spermatogenesis after exposure to EMF. •The impact of electromagnetic fields (EMF) on spermatogonial stem cells (SSCs).•EMF induce apoptosis and declined SSC viability, colony parameter via ROS increment.•The promising role of exosomes derived from Sertoli cells due their specific cargo.•Exosomes derived from Sertoli cells ameliorate the negative impact of EMF on SSCs.•Importance of exosomes as novel paracrine regulators on disrupted SSCs niche.
ISSN:0093-691X
1879-3231
DOI:10.1016/j.theriogenology.2021.08.001