Loading…
Dual drug release mechanisms through mesoporous silica nanoparticle/electrospun nanofiber for enhanced anticancer efficiency of curcumin
Electrospun nanofibers (NFs)-based drug delivery approaches are of particular interest as a hopeful implantable nanoplatform for localized cancer therapy and treating tissue defect after resection, allowing the on-site drug delivery with minimal side effect to healthy cells. To maintain therapeutic...
Saved in:
Published in: | Journal of biomedical materials research. Part A 2022-02, Vol.110 (2), p.316-330 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrospun nanofibers (NFs)-based drug delivery approaches are of particular interest as a hopeful implantable nanoplatform for localized cancer therapy and treating tissue defect after resection, allowing the on-site drug delivery with minimal side effect to healthy cells. To maintain therapeutic concentrations of anticancer molecules for a relatively long time through a combination of burst and sustained drug release mechanisms, a hybrid of polycaprolactone and gelatin (PCL/GEL) was used for co-encapsulation of free curcumin (CUR) and CUR-loaded mesoporous silica nanoparticles (CUR@MSNs) via electrospinning, resulting in a novel drug-loaded nanofibrous scaffold, CUR/CUR@MSNs-NFs. The as-prepared MSNs and composite NFs were characterized via TGA, FTIR, FE-SEM, TEM, and BET. In vitro release profile of CUR from CUR/CUR@MSNs-NFs was examined, and the in vitro antitumor efficacy against MDA-MB-231 breast cancer cells was also evaluated through MTT, scratch assay, DAPI staining, and real-time PCR. The results disclosed that the smooth, bead-free, and randomly oriented CUR/CUR@MSNs-NFs displayed a combination of initial rapid discharge and sustained release for CUR, which led to higher cytotoxicity, lower migration as well as a more pronounced effect on apoptosis induction than CUR-NFs and CUR@MSNs-NFs. The present study illustrated that the dual drug release mechanisms through MSN/NF-mediated drug delivery systems might have a highly hopeful application as a localized implantable scaffold for potential postoperative breast cancer therapy. |
---|---|
ISSN: | 1549-3296 1552-4965 |
DOI: | 10.1002/jbm.a.37288 |