Loading…

A duality approach to minimax results for quasi-saddle functions in finite dimensions

We show how saddle point theorems for a quasiconvex-quasiconcave function can be derived from duality theory. A symmetric duality framework that provides the machinery for deriving saddle point theorems is presented. Generating the theorems, via the framework, provides a deeper understanding of assu...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 1992-04, Vol.55 (1), p.81-98
Main Authors: PASSY, U, PRISMAN, E. Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3
cites cdi_FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3
container_end_page 98
container_issue 1
container_start_page 81
container_title Mathematical programming
container_volume 55
creator PASSY, U
PRISMAN, E. Z
description We show how saddle point theorems for a quasiconvex-quasiconcave function can be derived from duality theory. A symmetric duality framework that provides the machinery for deriving saddle point theorems is presented. Generating the theorems, via the framework, provides a deeper understanding of assumption employed in existing theorems which do not utilize duality theory.
doi_str_mv 10.1007/BF01581192
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25607164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25607164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKsbf0EW4kIYvUkmmZllLVaFghu7HjJ5YGQebW4G7L93SouuDhy-e7jnEHLL4JEBFE_PK2CyZKziZ2TGcqGyXOXqnMwAuMykYnBJrhC_AYCJspyRzYLaUbch7anebuOgzRdNA-1CHzr9Q6PDsU1I_RDpbtQYMtTWto76sTcpDD3S0FM_0clRGzrX48G8Jhdet-huTjonm9XL5_ItW3-8vi8X68zwskqZVXmhJYB3PAelrfBFAyKXvtClZ7ZsBChuGlty1jDHC19xOdkqFwKkN07Myf0xd_p8NzpMdRfQuLbVvRtGrLlUULCJn5OHI2jigBidr7dxKhj3NYP6sFz9v9wE351SNRrd-qh7E_DvQrJKMqnEL_VRbUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25607164</pqid></control><display><type>article</type><title>A duality approach to minimax results for quasi-saddle functions in finite dimensions</title><source>SpringerLink_过刊(NSTL购买)</source><creator>PASSY, U ; PRISMAN, E. Z</creator><creatorcontrib>PASSY, U ; PRISMAN, E. Z</creatorcontrib><description>We show how saddle point theorems for a quasiconvex-quasiconcave function can be derived from duality theory. A symmetric duality framework that provides the machinery for deriving saddle point theorems is presented. Generating the theorems, via the framework, provides a deeper understanding of assumption employed in existing theorems which do not utilize duality theory.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/BF01581192</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Optimization. Search problems</subject><ispartof>Mathematical programming, 1992-04, Vol.55 (1), p.81-98</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3</citedby><cites>FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5195156$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PASSY, U</creatorcontrib><creatorcontrib>PRISMAN, E. Z</creatorcontrib><title>A duality approach to minimax results for quasi-saddle functions in finite dimensions</title><title>Mathematical programming</title><description>We show how saddle point theorems for a quasiconvex-quasiconcave function can be derived from duality theory. A symmetric duality framework that provides the machinery for deriving saddle point theorems is presented. Generating the theorems, via the framework, provides a deeper understanding of assumption employed in existing theorems which do not utilize duality theory.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization. Search problems</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWKsbf0EW4kIYvUkmmZllLVaFghu7HjJ5YGQebW4G7L93SouuDhy-e7jnEHLL4JEBFE_PK2CyZKziZ2TGcqGyXOXqnMwAuMykYnBJrhC_AYCJspyRzYLaUbch7anebuOgzRdNA-1CHzr9Q6PDsU1I_RDpbtQYMtTWto76sTcpDD3S0FM_0clRGzrX48G8Jhdet-huTjonm9XL5_ItW3-8vi8X68zwskqZVXmhJYB3PAelrfBFAyKXvtClZ7ZsBChuGlty1jDHC19xOdkqFwKkN07Myf0xd_p8NzpMdRfQuLbVvRtGrLlUULCJn5OHI2jigBidr7dxKhj3NYP6sFz9v9wE351SNRrd-qh7E_DvQrJKMqnEL_VRbUQ</recordid><startdate>199204</startdate><enddate>199204</enddate><creator>PASSY, U</creator><creator>PRISMAN, E. Z</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199204</creationdate><title>A duality approach to minimax results for quasi-saddle functions in finite dimensions</title><author>PASSY, U ; PRISMAN, E. Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization. Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PASSY, U</creatorcontrib><creatorcontrib>PRISMAN, E. Z</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PASSY, U</au><au>PRISMAN, E. Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A duality approach to minimax results for quasi-saddle functions in finite dimensions</atitle><jtitle>Mathematical programming</jtitle><date>1992-04</date><risdate>1992</risdate><volume>55</volume><issue>1</issue><spage>81</spage><epage>98</epage><pages>81-98</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We show how saddle point theorems for a quasiconvex-quasiconcave function can be derived from duality theory. A symmetric duality framework that provides the machinery for deriving saddle point theorems is presented. Generating the theorems, via the framework, provides a deeper understanding of assumption employed in existing theorems which do not utilize duality theory.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01581192</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 1992-04, Vol.55 (1), p.81-98
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_25607164
source SpringerLink_过刊(NSTL购买)
subjects Applied sciences
Exact sciences and technology
Operational research and scientific management
Operational research. Management science
Optimization. Search problems
title A duality approach to minimax results for quasi-saddle functions in finite dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20duality%20approach%20to%20minimax%20results%20for%20quasi-saddle%20functions%20in%20finite%20dimensions&rft.jtitle=Mathematical%20programming&rft.au=PASSY,%20U&rft.date=1992-04&rft.volume=55&rft.issue=1&rft.spage=81&rft.epage=98&rft.pages=81-98&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/BF01581192&rft_dat=%3Cproquest_cross%3E25607164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-d647a500fe2406ad3f7b0345f7a8f1d8b3062cbd821b1e27f9251d8643305fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25607164&rft_id=info:pmid/&rfr_iscdi=true