Loading…

Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations

The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite thei...

Full description

Saved in:
Bibliographic Details
Published in:BioSystems 2021-11, Vol.209, p.104505-104505, Article 104505
Main Authors: Caparotta, Marcelo, Masone, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3
cites cdi_FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3
container_end_page 104505
container_issue
container_start_page 104505
container_title BioSystems
container_volume 209
creator Caparotta, Marcelo
Masone, Diego
description The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations. •CD81’s open-close transition is a collective effect.•CD81 sequesters free cholesterol in the lipid bilayer.•CD81:cholesterol interactions inhibit large bilayer deformations.
doi_str_mv 10.1016/j.biosystems.2021.104505
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2562521316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264721001519</els_id><sourcerecordid>2562521316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3</originalsourceid><addsrcrecordid>eNqFkMlOwzAQhi0EgrK8AvKRS4q3OMkRKjYJiQuIo-XYE3CVxMWTIvXtcVWWI3OZ0ej_Z_kIoZzNOeP6cjlvQ8QNTjDgXDDBc1uVrNwjM15XoqilUPtkxiSThdCqOiLHiEuWo6z5ITmSSjFZ8WZGXhfvsYc8KMWernq7QWqpBxcwfALNTaBhpBNMyeLKjrm2iDC0fQCkfp3C-EbbkH2Qsq2LabBTiCOekoPO9ghn3_mEvNzePC_ui8enu4fF1WPhlFBTIayv2w6kZZ63rsl3yaaxulJ13TktFXjrGl2Lqqw0k2XnLCtFp3llfcW47OQJudjNXaX4sc6PmCGgg763I8Q1GlFqUQouuc7Seid1KSIm6MwqhcGmjeHMbLGapfnDarZYzQ5rtp5_b1m3A_hf4w_HLLjeCSD_-hkgGXQBRgc-JHCT8TH8v-ULi1-PmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562521316</pqid></control><display><type>article</type><title>Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations</title><source>ScienceDirect Freedom Collection</source><creator>Caparotta, Marcelo ; Masone, Diego</creator><creatorcontrib>Caparotta, Marcelo ; Masone, Diego</creatorcontrib><description>The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations. •CD81’s open-close transition is a collective effect.•CD81 sequesters free cholesterol in the lipid bilayer.•CD81:cholesterol interactions inhibit large bilayer deformations.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2021.104505</identifier><identifier>PMID: 34403719</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Algorithms ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cholesterol - chemistry ; Cholesterol - metabolism ; Cholesterol sequestering ; Collective variable ; Emergent properties ; Humans ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane Microdomains - chemistry ; Membrane Microdomains - metabolism ; Molecular dynamics ; Molecular Dynamics Simulation ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Protein Binding ; Protein Conformation ; Tetraspanin 28 - chemistry ; Tetraspanin 28 - metabolism ; Tetraspanin CD81 ; Thermodynamics</subject><ispartof>BioSystems, 2021-11, Vol.209, p.104505-104505, Article 104505</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3</citedby><cites>FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3</cites><orcidid>0000-0001-5770-8614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34403719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caparotta, Marcelo</creatorcontrib><creatorcontrib>Masone, Diego</creatorcontrib><title>Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations. •CD81’s open-close transition is a collective effect.•CD81 sequesters free cholesterol in the lipid bilayer.•CD81:cholesterol interactions inhibit large bilayer deformations.</description><subject>Algorithms</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cholesterol - chemistry</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol sequestering</subject><subject>Collective variable</subject><subject>Emergent properties</subject><subject>Humans</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane Microdomains - chemistry</subject><subject>Membrane Microdomains - metabolism</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Tetraspanin 28 - chemistry</subject><subject>Tetraspanin 28 - metabolism</subject><subject>Tetraspanin CD81</subject><subject>Thermodynamics</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQhi0EgrK8AvKRS4q3OMkRKjYJiQuIo-XYE3CVxMWTIvXtcVWWI3OZ0ej_Z_kIoZzNOeP6cjlvQ8QNTjDgXDDBc1uVrNwjM15XoqilUPtkxiSThdCqOiLHiEuWo6z5ITmSSjFZ8WZGXhfvsYc8KMWernq7QWqpBxcwfALNTaBhpBNMyeLKjrm2iDC0fQCkfp3C-EbbkH2Qsq2LabBTiCOekoPO9ghn3_mEvNzePC_ui8enu4fF1WPhlFBTIayv2w6kZZ63rsl3yaaxulJ13TktFXjrGl2Lqqw0k2XnLCtFp3llfcW47OQJudjNXaX4sc6PmCGgg763I8Q1GlFqUQouuc7Seid1KSIm6MwqhcGmjeHMbLGapfnDarZYzQ5rtp5_b1m3A_hf4w_HLLjeCSD_-hkgGXQBRgc-JHCT8TH8v-ULi1-PmQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Caparotta, Marcelo</creator><creator>Masone, Diego</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5770-8614</orcidid></search><sort><creationdate>202111</creationdate><title>Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations</title><author>Caparotta, Marcelo ; Masone, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cholesterol - chemistry</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol sequestering</topic><topic>Collective variable</topic><topic>Emergent properties</topic><topic>Humans</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane Microdomains - chemistry</topic><topic>Membrane Microdomains - metabolism</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Tetraspanin 28 - chemistry</topic><topic>Tetraspanin 28 - metabolism</topic><topic>Tetraspanin CD81</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caparotta, Marcelo</creatorcontrib><creatorcontrib>Masone, Diego</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caparotta, Marcelo</au><au>Masone, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2021-11</date><risdate>2021</risdate><volume>209</volume><spage>104505</spage><epage>104505</epage><pages>104505-104505</pages><artnum>104505</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations. •CD81’s open-close transition is a collective effect.•CD81 sequesters free cholesterol in the lipid bilayer.•CD81:cholesterol interactions inhibit large bilayer deformations.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>34403719</pmid><doi>10.1016/j.biosystems.2021.104505</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5770-8614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 2021-11, Vol.209, p.104505-104505, Article 104505
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_2562521316
source ScienceDirect Freedom Collection
subjects Algorithms
Cell Membrane - chemistry
Cell Membrane - metabolism
Cholesterol - chemistry
Cholesterol - metabolism
Cholesterol sequestering
Collective variable
Emergent properties
Humans
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Membrane Microdomains - chemistry
Membrane Microdomains - metabolism
Molecular dynamics
Molecular Dynamics Simulation
Phosphatidylcholines - chemistry
Phosphatidylcholines - metabolism
Protein Binding
Protein Conformation
Tetraspanin 28 - chemistry
Tetraspanin 28 - metabolism
Tetraspanin CD81
Thermodynamics
title Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholesterol%20plays%20a%20decisive%20role%20in%20tetraspanin%20assemblies%20during%20bilayer%20deformations&rft.jtitle=BioSystems&rft.au=Caparotta,%20Marcelo&rft.date=2021-11&rft.volume=209&rft.spage=104505&rft.epage=104505&rft.pages=104505-104505&rft.artnum=104505&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2021.104505&rft_dat=%3Cproquest_cross%3E2562521316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-2ad8bfe3a0d1bc9344399a67488fc634edac96827576035fca052f617ad7013f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562521316&rft_id=info:pmid/34403719&rfr_iscdi=true