Loading…
Phenylalanine Interacts with Oleic Acid-Based Vesicle Membrane. Understanding the Molecular Role of Fibril–Vesicle Interaction under the Context of Phenylketonuria
In the present contribution, on the basis of a spectroscopic and microscopic investigation, the characterization and photophysics of various assemblies of oleic acid/oleate solution at three pH values, namely, 8.28, 9.72, and 11.77, were explored. The variation in the dynamic response of aqua molecu...
Saved in:
Published in: | The journal of physical chemistry. B 2021-09, Vol.125 (34), p.9776-9793 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present contribution, on the basis of a spectroscopic and microscopic investigation, the characterization and photophysics of various assemblies of oleic acid/oleate solution at three pH values, namely, 8.28, 9.72, and 11.77, were explored. The variation in the dynamic response of aqua molecules in and around the assemblies has been interrogated by a picoseconds solvation dynamics experiment using a time-correlated single-photon counting setup employing coumarin-153 as a probe. On the one hand, the time-resolved fluorescence anisotropy measurement along with the fluorescence correlation spectroscopy experiment was executed to extract information regarding the comparison of the extent of the internal restricted confinement of these assemblies. On the other hand, an effort to investigate the cross-interaction between the self-assembled architectures of l-phenylalanine (l-Phe), responsible for phenylketonuria (PKU) disorder, and the oleic acid at the vesicle-forming pH established that the l-Phe fibrillar morphologies strongly alter the dynamic properties of the vesicle membrane formed by the oleic acid. Specifically, the interaction of the l-Phe assemblies with the oleic acid vesicle membrane is found to introduce the flexibility of the vesicle membrane and alter the hydration properties of the membrane. To track the fibril-induced alterations of the oleic acid vesicle properties, various spectroscopic and microscopic investigations were performed. The mutual reconciliation of the experimental outputs, therefore, portrays the state of the art, which accounts for the fibril-induced alterations of the properties of the oleic acid vesicle membrane, the mimicking setup of the cellular membrane, thereby informing us that alterations of such a property of the membrane should be taken into active consideration during the rational development of therapeutic modulators against disorders like PKU. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.1c05592 |