Loading…

A DNA Inversion System in Eukaryotes Established via Laboratory Evolution

DNA inversion is a type of site-specific recombination system that plays an important role in the generation of genetic diversity and phenotypic adaptation by programmed rearrangements in bacteria. However, no such inversion system exhibiting a strong directionality bias has been identified or devel...

Full description

Saved in:
Bibliographic Details
Published in:ACS synthetic biology 2021-09, Vol.10 (9), p.2222-2230
Main Authors: Han, Peiyan, Ma, Yuan, Fu, Zongheng, Guo, Zhou, Xie, Jiangnan, Wu, Yi, Yuan, Ying-jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DNA inversion is a type of site-specific recombination system that plays an important role in the generation of genetic diversity and phenotypic adaptation by programmed rearrangements in bacteria. However, no such inversion system exhibiting a strong directionality bias has been identified or developed in eukaryotes yet. Here, using directed evolution of Rci recombinase, a tyrosine recombinase from a bacterial DNA inversion system, we identified a mutant Rci8 with a ratio of inversion/deletion up to ∼4320 in yeast. Based on Rci8 recombinase and sfxa101 sites, we have established a DNA inversion system in yeast and mammalian cells, enabling specificity for DNA inversions between inverted sites over deletions between directly repeated sites. Our results validated that the reversible DNA inversion system can act as an on/off transcriptional switch. Moreover, we demonstrate that the inversion system can also work on linear chromosomes. The eukaryotic DNA inversion system would provide a new tool for fields of genetic circuits, cellular barcoding, and synthetic genomes.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.1c00132