Loading…

Atomically resolved single-molecule triplet quenching

Little is known about the atomistic mechanism that nature uses to mitigate the destructive interaction of triplet-excited pigment chromophores with omnipresent oxygen. Peng et al. tackled this challenge by developing a technique based on conducting atomic force microscopy to populate and track tripl...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2021-07, Vol.373 (6553), p.452-456
Main Authors: Peng, Jinbo, Sokolov, Sophia, Hernangómez-Pérez, Daniel, Evers, Ferdinand, Gross, Leo, Lupton, John M., Repp, Jascha
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93
cites cdi_FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93
container_end_page 456
container_issue 6553
container_start_page 452
container_title Science (American Association for the Advancement of Science)
container_volume 373
creator Peng, Jinbo
Sokolov, Sophia
Hernangómez-Pérez, Daniel
Evers, Ferdinand
Gross, Leo
Lupton, John M.
Repp, Jascha
description Little is known about the atomistic mechanism that nature uses to mitigate the destructive interaction of triplet-excited pigment chromophores with omnipresent oxygen. Peng et al. tackled this challenge by developing a technique based on conducting atomic force microscopy to populate and track triplets in a single pentacene molecule, a model ϖ-conjugated system, placed on a sodium chloride surface (see the Perspective by Li and Jiang). The authors show how the triplet-state lifetime can be quenched in controllable manner by atomic-scale manipulations with oxygen co-adsorbed in close vicinity. The presented single-molecule spectroscopy paves the way for further atomically resolved studies of triplet excited states that play an important role in many other fields, such as organic electronics, photocatalysis, and photodynamic therapy. Science , abh1155, this issue p. 452 ; see also abj5860, p. 392 Single-molecule triplet states and their interactions with O 2 molecules can be tracked with real-space atomic resolution. The nonequilibrium triplet state of molecules plays an important role in photocatalysis, organic photovoltaics, and photodynamic therapy. We report the direct measurement of the triplet lifetime of an individual pentacene molecule on an insulating surface with atomic resolution by introducing an electronic pump-probe method in atomic force microscopy. Strong quenching of the triplet lifetime is observed if oxygen molecules are coadsorbed in close proximity. By means of single-molecule manipulation techniques, different arrangements with oxygen molecules were created and characterized with atomic precision, allowing for the direct correlation of molecular arrangements with the lifetime of the quenched triplet. Such electrical addressing of long-lived triplets of single molecules, combined with atomic-scale manipulation, offers previously unexplored routes to control and study local spin-spin interactions.
doi_str_mv 10.1126/science.abh1155
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2566031898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566031898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93</originalsourceid><addsrcrecordid>eNotkM9LwzAUx4MoWKdnrz166fbSt7TNcQx1wsCLnkOSvbhK-sOkFfbfG9lOj8f3F3wYe-Sw5LysVtG21FtaanPkXIgrlnGQopAl4DXLALAqGqjFLbuL8RsgaRIzJjbT0LVWe3_KA8XB_9Ihj23_5anoBk929pRPoR09TfnPnBaOSbxnN077SA-Xu2CfL88f212xf3992272hcU1TAXVICVyzhG1cSI9UBvntMTKgpOiquS6dCigNJKc4daQwEOVUs5I7SQu2NO5dwxDGo-T6tpoyXvd0zBHVaYKQN7IJllXZ6sNQ4yBnBpD2-lwUhzUPyB1AaQugPAP901bqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566031898</pqid></control><display><type>article</type><title>Atomically resolved single-molecule triplet quenching</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Peng, Jinbo ; Sokolov, Sophia ; Hernangómez-Pérez, Daniel ; Evers, Ferdinand ; Gross, Leo ; Lupton, John M. ; Repp, Jascha</creator><creatorcontrib>Peng, Jinbo ; Sokolov, Sophia ; Hernangómez-Pérez, Daniel ; Evers, Ferdinand ; Gross, Leo ; Lupton, John M. ; Repp, Jascha</creatorcontrib><description>Little is known about the atomistic mechanism that nature uses to mitigate the destructive interaction of triplet-excited pigment chromophores with omnipresent oxygen. Peng et al. tackled this challenge by developing a technique based on conducting atomic force microscopy to populate and track triplets in a single pentacene molecule, a model ϖ-conjugated system, placed on a sodium chloride surface (see the Perspective by Li and Jiang). The authors show how the triplet-state lifetime can be quenched in controllable manner by atomic-scale manipulations with oxygen co-adsorbed in close vicinity. The presented single-molecule spectroscopy paves the way for further atomically resolved studies of triplet excited states that play an important role in many other fields, such as organic electronics, photocatalysis, and photodynamic therapy. Science , abh1155, this issue p. 452 ; see also abj5860, p. 392 Single-molecule triplet states and their interactions with O 2 molecules can be tracked with real-space atomic resolution. The nonequilibrium triplet state of molecules plays an important role in photocatalysis, organic photovoltaics, and photodynamic therapy. We report the direct measurement of the triplet lifetime of an individual pentacene molecule on an insulating surface with atomic resolution by introducing an electronic pump-probe method in atomic force microscopy. Strong quenching of the triplet lifetime is observed if oxygen molecules are coadsorbed in close proximity. By means of single-molecule manipulation techniques, different arrangements with oxygen molecules were created and characterized with atomic precision, allowing for the direct correlation of molecular arrangements with the lifetime of the quenched triplet. Such electrical addressing of long-lived triplets of single molecules, combined with atomic-scale manipulation, offers previously unexplored routes to control and study local spin-spin interactions.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abh1155</identifier><language>eng</language><ispartof>Science (American Association for the Advancement of Science), 2021-07, Vol.373 (6553), p.452-456</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93</citedby><cites>FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93</cites><orcidid>0000-0003-1308-3848 ; 0000-0003-2883-7083 ; 0000-0002-4277-0236 ; 0000-0001-5935-0847 ; 0000-0002-5337-4159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27898,27899</link.rule.ids></links><search><creatorcontrib>Peng, Jinbo</creatorcontrib><creatorcontrib>Sokolov, Sophia</creatorcontrib><creatorcontrib>Hernangómez-Pérez, Daniel</creatorcontrib><creatorcontrib>Evers, Ferdinand</creatorcontrib><creatorcontrib>Gross, Leo</creatorcontrib><creatorcontrib>Lupton, John M.</creatorcontrib><creatorcontrib>Repp, Jascha</creatorcontrib><title>Atomically resolved single-molecule triplet quenching</title><title>Science (American Association for the Advancement of Science)</title><description>Little is known about the atomistic mechanism that nature uses to mitigate the destructive interaction of triplet-excited pigment chromophores with omnipresent oxygen. Peng et al. tackled this challenge by developing a technique based on conducting atomic force microscopy to populate and track triplets in a single pentacene molecule, a model ϖ-conjugated system, placed on a sodium chloride surface (see the Perspective by Li and Jiang). The authors show how the triplet-state lifetime can be quenched in controllable manner by atomic-scale manipulations with oxygen co-adsorbed in close vicinity. The presented single-molecule spectroscopy paves the way for further atomically resolved studies of triplet excited states that play an important role in many other fields, such as organic electronics, photocatalysis, and photodynamic therapy. Science , abh1155, this issue p. 452 ; see also abj5860, p. 392 Single-molecule triplet states and their interactions with O 2 molecules can be tracked with real-space atomic resolution. The nonequilibrium triplet state of molecules plays an important role in photocatalysis, organic photovoltaics, and photodynamic therapy. We report the direct measurement of the triplet lifetime of an individual pentacene molecule on an insulating surface with atomic resolution by introducing an electronic pump-probe method in atomic force microscopy. Strong quenching of the triplet lifetime is observed if oxygen molecules are coadsorbed in close proximity. By means of single-molecule manipulation techniques, different arrangements with oxygen molecules were created and characterized with atomic precision, allowing for the direct correlation of molecular arrangements with the lifetime of the quenched triplet. Such electrical addressing of long-lived triplets of single molecules, combined with atomic-scale manipulation, offers previously unexplored routes to control and study local spin-spin interactions.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAUx4MoWKdnrz166fbSt7TNcQx1wsCLnkOSvbhK-sOkFfbfG9lOj8f3F3wYe-Sw5LysVtG21FtaanPkXIgrlnGQopAl4DXLALAqGqjFLbuL8RsgaRIzJjbT0LVWe3_KA8XB_9Ihj23_5anoBk929pRPoR09TfnPnBaOSbxnN077SA-Xu2CfL88f212xf3992272hcU1TAXVICVyzhG1cSI9UBvntMTKgpOiquS6dCigNJKc4daQwEOVUs5I7SQu2NO5dwxDGo-T6tpoyXvd0zBHVaYKQN7IJllXZ6sNQ4yBnBpD2-lwUhzUPyB1AaQugPAP901bqw</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Peng, Jinbo</creator><creator>Sokolov, Sophia</creator><creator>Hernangómez-Pérez, Daniel</creator><creator>Evers, Ferdinand</creator><creator>Gross, Leo</creator><creator>Lupton, John M.</creator><creator>Repp, Jascha</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1308-3848</orcidid><orcidid>https://orcid.org/0000-0003-2883-7083</orcidid><orcidid>https://orcid.org/0000-0002-4277-0236</orcidid><orcidid>https://orcid.org/0000-0001-5935-0847</orcidid><orcidid>https://orcid.org/0000-0002-5337-4159</orcidid></search><sort><creationdate>20210723</creationdate><title>Atomically resolved single-molecule triplet quenching</title><author>Peng, Jinbo ; Sokolov, Sophia ; Hernangómez-Pérez, Daniel ; Evers, Ferdinand ; Gross, Leo ; Lupton, John M. ; Repp, Jascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jinbo</creatorcontrib><creatorcontrib>Sokolov, Sophia</creatorcontrib><creatorcontrib>Hernangómez-Pérez, Daniel</creatorcontrib><creatorcontrib>Evers, Ferdinand</creatorcontrib><creatorcontrib>Gross, Leo</creatorcontrib><creatorcontrib>Lupton, John M.</creatorcontrib><creatorcontrib>Repp, Jascha</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jinbo</au><au>Sokolov, Sophia</au><au>Hernangómez-Pérez, Daniel</au><au>Evers, Ferdinand</au><au>Gross, Leo</au><au>Lupton, John M.</au><au>Repp, Jascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically resolved single-molecule triplet quenching</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-07-23</date><risdate>2021</risdate><volume>373</volume><issue>6553</issue><spage>452</spage><epage>456</epage><pages>452-456</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Little is known about the atomistic mechanism that nature uses to mitigate the destructive interaction of triplet-excited pigment chromophores with omnipresent oxygen. Peng et al. tackled this challenge by developing a technique based on conducting atomic force microscopy to populate and track triplets in a single pentacene molecule, a model ϖ-conjugated system, placed on a sodium chloride surface (see the Perspective by Li and Jiang). The authors show how the triplet-state lifetime can be quenched in controllable manner by atomic-scale manipulations with oxygen co-adsorbed in close vicinity. The presented single-molecule spectroscopy paves the way for further atomically resolved studies of triplet excited states that play an important role in many other fields, such as organic electronics, photocatalysis, and photodynamic therapy. Science , abh1155, this issue p. 452 ; see also abj5860, p. 392 Single-molecule triplet states and their interactions with O 2 molecules can be tracked with real-space atomic resolution. The nonequilibrium triplet state of molecules plays an important role in photocatalysis, organic photovoltaics, and photodynamic therapy. We report the direct measurement of the triplet lifetime of an individual pentacene molecule on an insulating surface with atomic resolution by introducing an electronic pump-probe method in atomic force microscopy. Strong quenching of the triplet lifetime is observed if oxygen molecules are coadsorbed in close proximity. By means of single-molecule manipulation techniques, different arrangements with oxygen molecules were created and characterized with atomic precision, allowing for the direct correlation of molecular arrangements with the lifetime of the quenched triplet. Such electrical addressing of long-lived triplets of single molecules, combined with atomic-scale manipulation, offers previously unexplored routes to control and study local spin-spin interactions.</abstract><doi>10.1126/science.abh1155</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1308-3848</orcidid><orcidid>https://orcid.org/0000-0003-2883-7083</orcidid><orcidid>https://orcid.org/0000-0002-4277-0236</orcidid><orcidid>https://orcid.org/0000-0001-5935-0847</orcidid><orcidid>https://orcid.org/0000-0002-5337-4159</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-07, Vol.373 (6553), p.452-456
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2566031898
source American Association for the Advancement of Science; Alma/SFX Local Collection
title Atomically resolved single-molecule triplet quenching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T04%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20resolved%20single-molecule%20triplet%20quenching&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Peng,%20Jinbo&rft.date=2021-07-23&rft.volume=373&rft.issue=6553&rft.spage=452&rft.epage=456&rft.pages=452-456&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abh1155&rft_dat=%3Cproquest_cross%3E2566031898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-e7099311133abf509907bffa936c0f9566942f3502b9efb1cbe53d6709fb9af93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566031898&rft_id=info:pmid/&rfr_iscdi=true