Loading…

Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor‐Induced Electron Doping of Single‐Layer Graphene Electrode

Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single‐layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold–thiolate covalent contact. Thermoele...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2021-10, Vol.33 (41), p.e2103177-n/a
Main Authors: Park, Sohyun, Kim, Hwa Rang, Kim, Juhee, Hong, Byung‐Hee, Yoon, Hyo Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523
cites cdi_FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523
container_end_page n/a
container_issue 41
container_start_page e2103177
container_title Advanced materials (Weinheim)
container_volume 33
creator Park, Sohyun
Kim, Hwa Rang
Kim, Juhee
Hong, Byung‐Hee
Yoon, Hyo Jae
description Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single‐layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold–thiolate covalent contact. Thermoelectric junction measurements with a liquid‐metal technique reveal that the value of Seebeck coefficient in large‐area junctions based on n‐alkylamine self‐assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n‐alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field‐effect transistor analysis indicate that such enhancements benefit from the creation of new in‐gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules. Saturated molecules are not preferred in the research of organic thermoelectrics because of intrinsically wide bandgaps and poor thermopower. Graphene electrodes are demonstrated to be able to enhance thermopower of monolayers of saturated compounds. A noncovalent amine anchor induces the creation of in‐gap states and n‐type doping of graphene, thereby leading to an increased Seebeck coefficient relative to analogous covalent gold–thiolate monolayers.
doi_str_mv 10.1002/adma.202103177
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2566040803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580910575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhokiBeqkXTsLyNJF7pGi-DEaieMYcJIh6SzQ0rF2IJMqKcXw5p_Q39hfErpOGyBLphvueZ874CXkK4UxBWDfTbMxYwaMQkGl_EBGtGQ056DLEzICXZS5Flx9IqcxPgKAFiBGZD91K-NqbLKHFYaN7_wWQ-Ztdm_6IZg-LW58i_XQYsyWu-zWu9o_mRZdn01cvfLhz_733DXDQTFNYB-8yy59t3Y__2rSbDExC7NL4lkw3Qod_kMb_Ew-WtNG_PIyz8iPq-nDxXW-uJvNLyaLvOZUyJzzmgrOrFXaNgB2uZSmlKVRmlEupWBqKQrJGEiubKEUbQQDDbZsEKQtWXFGvh29XfC_Box9tVnHGtvWOPRDrFgpBHBQUCT0_A366Ifg0neJUqAppMuJGh-pOvgYA9qqC-uNCbuKQnUopDoUUv0vJAX0MbBdt7h7h64mlzeT1-wzlMOQxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580910575</pqid></control><display><type>article</type><title>Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor‐Induced Electron Doping of Single‐Layer Graphene Electrode</title><source>Wiley</source><creator>Park, Sohyun ; Kim, Hwa Rang ; Kim, Juhee ; Hong, Byung‐Hee ; Yoon, Hyo Jae</creator><creatorcontrib>Park, Sohyun ; Kim, Hwa Rang ; Kim, Juhee ; Hong, Byung‐Hee ; Yoon, Hyo Jae</creatorcontrib><description>Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single‐layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold–thiolate covalent contact. Thermoelectric junction measurements with a liquid‐metal technique reveal that the value of Seebeck coefficient in large‐area junctions based on n‐alkylamine self‐assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n‐alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field‐effect transistor analysis indicate that such enhancements benefit from the creation of new in‐gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules. Saturated molecules are not preferred in the research of organic thermoelectrics because of intrinsically wide bandgaps and poor thermopower. Graphene electrodes are demonstrated to be able to enhance thermopower of monolayers of saturated compounds. A noncovalent amine anchor induces the creation of in‐gap states and n‐type doping of graphene, thereby leading to an increased Seebeck coefficient relative to analogous covalent gold–thiolate monolayers.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202103177</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alkanes ; Alkylamines ; Chemical bonds ; Doping ; EGaIn ; Electrodes ; Gold ; Graphene ; Interfacial bonding ; Materials science ; molecular thermoelectrics ; Raman spectroscopy ; Seebeck effect ; self‐assembled monolayers ; Thermoelectricity ; Transistors</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (41), p.e2103177-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523</citedby><cites>FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523</cites><orcidid>0000-0002-2501-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Sohyun</creatorcontrib><creatorcontrib>Kim, Hwa Rang</creatorcontrib><creatorcontrib>Kim, Juhee</creatorcontrib><creatorcontrib>Hong, Byung‐Hee</creatorcontrib><creatorcontrib>Yoon, Hyo Jae</creatorcontrib><title>Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor‐Induced Electron Doping of Single‐Layer Graphene Electrode</title><title>Advanced materials (Weinheim)</title><description>Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single‐layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold–thiolate covalent contact. Thermoelectric junction measurements with a liquid‐metal technique reveal that the value of Seebeck coefficient in large‐area junctions based on n‐alkylamine self‐assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n‐alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field‐effect transistor analysis indicate that such enhancements benefit from the creation of new in‐gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules. Saturated molecules are not preferred in the research of organic thermoelectrics because of intrinsically wide bandgaps and poor thermopower. Graphene electrodes are demonstrated to be able to enhance thermopower of monolayers of saturated compounds. A noncovalent amine anchor induces the creation of in‐gap states and n‐type doping of graphene, thereby leading to an increased Seebeck coefficient relative to analogous covalent gold–thiolate monolayers.</description><subject>Alkanes</subject><subject>Alkylamines</subject><subject>Chemical bonds</subject><subject>Doping</subject><subject>EGaIn</subject><subject>Electrodes</subject><subject>Gold</subject><subject>Graphene</subject><subject>Interfacial bonding</subject><subject>Materials science</subject><subject>molecular thermoelectrics</subject><subject>Raman spectroscopy</subject><subject>Seebeck effect</subject><subject>self‐assembled monolayers</subject><subject>Thermoelectricity</subject><subject>Transistors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkT1v2zAQhokiBeqkXTsLyNJF7pGi-DEaieMYcJIh6SzQ0rF2IJMqKcXw5p_Q39hfErpOGyBLphvueZ874CXkK4UxBWDfTbMxYwaMQkGl_EBGtGQ056DLEzICXZS5Flx9IqcxPgKAFiBGZD91K-NqbLKHFYaN7_wWQ-Ztdm_6IZg-LW58i_XQYsyWu-zWu9o_mRZdn01cvfLhz_733DXDQTFNYB-8yy59t3Y__2rSbDExC7NL4lkw3Qod_kMb_Ew-WtNG_PIyz8iPq-nDxXW-uJvNLyaLvOZUyJzzmgrOrFXaNgB2uZSmlKVRmlEupWBqKQrJGEiubKEUbQQDDbZsEKQtWXFGvh29XfC_Box9tVnHGtvWOPRDrFgpBHBQUCT0_A366Ifg0neJUqAppMuJGh-pOvgYA9qqC-uNCbuKQnUopDoUUv0vJAX0MbBdt7h7h64mlzeT1-wzlMOQxQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Park, Sohyun</creator><creator>Kim, Hwa Rang</creator><creator>Kim, Juhee</creator><creator>Hong, Byung‐Hee</creator><creator>Yoon, Hyo Jae</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2501-0251</orcidid></search><sort><creationdate>20211001</creationdate><title>Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor‐Induced Electron Doping of Single‐Layer Graphene Electrode</title><author>Park, Sohyun ; Kim, Hwa Rang ; Kim, Juhee ; Hong, Byung‐Hee ; Yoon, Hyo Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkanes</topic><topic>Alkylamines</topic><topic>Chemical bonds</topic><topic>Doping</topic><topic>EGaIn</topic><topic>Electrodes</topic><topic>Gold</topic><topic>Graphene</topic><topic>Interfacial bonding</topic><topic>Materials science</topic><topic>molecular thermoelectrics</topic><topic>Raman spectroscopy</topic><topic>Seebeck effect</topic><topic>self‐assembled monolayers</topic><topic>Thermoelectricity</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sohyun</creatorcontrib><creatorcontrib>Kim, Hwa Rang</creatorcontrib><creatorcontrib>Kim, Juhee</creatorcontrib><creatorcontrib>Hong, Byung‐Hee</creatorcontrib><creatorcontrib>Yoon, Hyo Jae</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sohyun</au><au>Kim, Hwa Rang</au><au>Kim, Juhee</au><au>Hong, Byung‐Hee</au><au>Yoon, Hyo Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor‐Induced Electron Doping of Single‐Layer Graphene Electrode</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>41</issue><spage>e2103177</spage><epage>n/a</epage><pages>e2103177-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single‐layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold–thiolate covalent contact. Thermoelectric junction measurements with a liquid‐metal technique reveal that the value of Seebeck coefficient in large‐area junctions based on n‐alkylamine self‐assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n‐alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field‐effect transistor analysis indicate that such enhancements benefit from the creation of new in‐gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules. Saturated molecules are not preferred in the research of organic thermoelectrics because of intrinsically wide bandgaps and poor thermopower. Graphene electrodes are demonstrated to be able to enhance thermopower of monolayers of saturated compounds. A noncovalent amine anchor induces the creation of in‐gap states and n‐type doping of graphene, thereby leading to an increased Seebeck coefficient relative to analogous covalent gold–thiolate monolayers.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202103177</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2501-0251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-10, Vol.33 (41), p.e2103177-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2566040803
source Wiley
subjects Alkanes
Alkylamines
Chemical bonds
Doping
EGaIn
Electrodes
Gold
Graphene
Interfacial bonding
Materials science
molecular thermoelectrics
Raman spectroscopy
Seebeck effect
self‐assembled monolayers
Thermoelectricity
Transistors
title Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor‐Induced Electron Doping of Single‐Layer Graphene Electrode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermopower%20of%20Saturated%20Molecules%20by%20Noncovalent%20Anchor%E2%80%90Induced%20Electron%20Doping%20of%20Single%E2%80%90Layer%20Graphene%20Electrode&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Park,%20Sohyun&rft.date=2021-10-01&rft.volume=33&rft.issue=41&rft.spage=e2103177&rft.epage=n/a&rft.pages=e2103177-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202103177&rft_dat=%3Cproquest_cross%3E2580910575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4167-44c1642ff89fd00fbb7a575a8921477628b637220748f3881d62090f5de07f523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580910575&rft_id=info:pmid/&rfr_iscdi=true