Loading…
Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer
Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery du...
Saved in:
Published in: | Journal of cellular physiology 2022-01, Vol.237 (1), p.911-933 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83 |
container_end_page | 933 |
container_issue | 1 |
container_start_page | 911 |
container_title | Journal of cellular physiology |
container_volume | 237 |
creator | Hui, Bingqing Lu, Chen Wang, Jing Xu, Yetao Yang, Yuchen Ji, Hao Li, Xiaofei Xu, Lingyan Wang, Jiawei Tang, Weiwei Wang, Keming Gu, Yanhong |
description | Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression.
GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC. |
doi_str_mv | 10.1002/jcp.30566 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2567983019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2567983019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWv8cfAEJeNHDav5sss1RilZFUVDPIZvMli3bTU26am8-gs_ok5ja6kHwMsPM_Pj4mA-hfUpOKCHsdGynJ5wIKddQjxJVZLkUbB310o1mSuR0C23HOCaEKMX5JtrieS65kqyH2vN2VLcAARyGNx_9BCKufMDWf75_OGjqFwhz7Ct8P7wVaXX2QLFpHfZvpqmnjZnVLZ55HCBxEbAL3SgNsY4z01rA6Wp941NdjGEXbVSmibC36jvo6eL8cXCZ3dwNrwZnN5nlgsvMEZnMUpYXRsoyLyrKhCPKci5zxo2lfUHLggpiC8KcKCWr-rLIhSppWVWuz3fQ0VJ3GvxzB3GmJ3W00DSmBd9FzYQsVJ8TqhJ6-Acd-y60yZ1mkqUvKVXIRB0vKRt8jAEqPQ31xIS5pkQvQtApBP0dQmIPVopdOQH3S_58PQGnS-C1bmD-v5K-HtwvJb8AaWiQyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623969976</pqid></control><display><type>article</type><title>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hui, Bingqing ; Lu, Chen ; Wang, Jing ; Xu, Yetao ; Yang, Yuchen ; Ji, Hao ; Li, Xiaofei ; Xu, Lingyan ; Wang, Jiawei ; Tang, Weiwei ; Wang, Keming ; Gu, Yanhong</creator><creatorcontrib>Hui, Bingqing ; Lu, Chen ; Wang, Jing ; Xu, Yetao ; Yang, Yuchen ; Ji, Hao ; Li, Xiaofei ; Xu, Lingyan ; Wang, Jiawei ; Tang, Weiwei ; Wang, Keming ; Gu, Yanhong</creatorcontrib><description>Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression.
GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30566</identifier><identifier>PMID: 34463962</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alternative splicing ; Antisense RNA ; Antisense therapy ; Cell proliferation ; Cell Proliferation - genetics ; Colon ; Colon cancer ; Colonic Neoplasms - drug therapy ; Colonic Neoplasms - genetics ; Colorectal cancer ; Colorectal carcinoma ; Drug Resistance ; engineered exosomes ; Exosomes ; Exosomes - genetics ; Exosomes - metabolism ; Fluorescence ; Fluorescence in situ hybridization ; Gene expression ; Gene Expression Regulation, Neoplastic - genetics ; Gene sequencing ; Genes ; GFI1B ; Humans ; Immunoprecipitation ; In Situ Hybridization, Fluorescence ; Metastases ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Nucleic acids ; Oxaliplatin ; Oxaliplatin - pharmacology ; PGM5‐AS1 ; Regulatory mechanisms (biology) ; Reporter gene ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Serine-Arginine Splicing Factors - genetics ; Serine-Arginine Splicing Factors - metabolism ; Splicing ; Transcription ; Transcriptomes</subject><ispartof>Journal of cellular physiology, 2022-01, Vol.237 (1), p.911-933</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</citedby><cites>FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</cites><orcidid>0000-0003-3235-5714 ; 0000-0001-7354-5237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34463962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui, Bingqing</creatorcontrib><creatorcontrib>Lu, Chen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xu, Yetao</creatorcontrib><creatorcontrib>Yang, Yuchen</creatorcontrib><creatorcontrib>Ji, Hao</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Xu, Lingyan</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Tang, Weiwei</creatorcontrib><creatorcontrib>Wang, Keming</creatorcontrib><creatorcontrib>Gu, Yanhong</creatorcontrib><title>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression.
GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.</description><subject>Alternative splicing</subject><subject>Antisense RNA</subject><subject>Antisense therapy</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - drug therapy</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Drug Resistance</subject><subject>engineered exosomes</subject><subject>Exosomes</subject><subject>Exosomes - genetics</subject><subject>Exosomes - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>GFI1B</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Metastases</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Nucleic acids</subject><subject>Oxaliplatin</subject><subject>Oxaliplatin - pharmacology</subject><subject>PGM5‐AS1</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reporter gene</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Serine-Arginine Splicing Factors - genetics</subject><subject>Serine-Arginine Splicing Factors - metabolism</subject><subject>Splicing</subject><subject>Transcription</subject><subject>Transcriptomes</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9KAzEQxoMoWv8cfAEJeNHDav5sss1RilZFUVDPIZvMli3bTU26am8-gs_ok5ja6kHwMsPM_Pj4mA-hfUpOKCHsdGynJ5wIKddQjxJVZLkUbB310o1mSuR0C23HOCaEKMX5JtrieS65kqyH2vN2VLcAARyGNx_9BCKufMDWf75_OGjqFwhz7Ct8P7wVaXX2QLFpHfZvpqmnjZnVLZ55HCBxEbAL3SgNsY4z01rA6Wp941NdjGEXbVSmibC36jvo6eL8cXCZ3dwNrwZnN5nlgsvMEZnMUpYXRsoyLyrKhCPKci5zxo2lfUHLggpiC8KcKCWr-rLIhSppWVWuz3fQ0VJ3GvxzB3GmJ3W00DSmBd9FzYQsVJ8TqhJ6-Acd-y60yZ1mkqUvKVXIRB0vKRt8jAEqPQ31xIS5pkQvQtApBP0dQmIPVopdOQH3S_58PQGnS-C1bmD-v5K-HtwvJb8AaWiQyg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Hui, Bingqing</creator><creator>Lu, Chen</creator><creator>Wang, Jing</creator><creator>Xu, Yetao</creator><creator>Yang, Yuchen</creator><creator>Ji, Hao</creator><creator>Li, Xiaofei</creator><creator>Xu, Lingyan</creator><creator>Wang, Jiawei</creator><creator>Tang, Weiwei</creator><creator>Wang, Keming</creator><creator>Gu, Yanhong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3235-5714</orcidid><orcidid>https://orcid.org/0000-0001-7354-5237</orcidid></search><sort><creationdate>202201</creationdate><title>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</title><author>Hui, Bingqing ; Lu, Chen ; Wang, Jing ; Xu, Yetao ; Yang, Yuchen ; Ji, Hao ; Li, Xiaofei ; Xu, Lingyan ; Wang, Jiawei ; Tang, Weiwei ; Wang, Keming ; Gu, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative splicing</topic><topic>Antisense RNA</topic><topic>Antisense therapy</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - drug therapy</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Drug Resistance</topic><topic>engineered exosomes</topic><topic>Exosomes</topic><topic>Exosomes - genetics</topic><topic>Exosomes - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>GFI1B</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Metastases</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Nucleic acids</topic><topic>Oxaliplatin</topic><topic>Oxaliplatin - pharmacology</topic><topic>PGM5‐AS1</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reporter gene</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Serine-Arginine Splicing Factors - genetics</topic><topic>Serine-Arginine Splicing Factors - metabolism</topic><topic>Splicing</topic><topic>Transcription</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Bingqing</creatorcontrib><creatorcontrib>Lu, Chen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xu, Yetao</creatorcontrib><creatorcontrib>Yang, Yuchen</creatorcontrib><creatorcontrib>Ji, Hao</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Xu, Lingyan</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Tang, Weiwei</creatorcontrib><creatorcontrib>Wang, Keming</creatorcontrib><creatorcontrib>Gu, Yanhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Bingqing</au><au>Lu, Chen</au><au>Wang, Jing</au><au>Xu, Yetao</au><au>Yang, Yuchen</au><au>Ji, Hao</au><au>Li, Xiaofei</au><au>Xu, Lingyan</au><au>Wang, Jiawei</au><au>Tang, Weiwei</au><au>Wang, Keming</au><au>Gu, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2022-01</date><risdate>2022</risdate><volume>237</volume><issue>1</issue><spage>911</spage><epage>933</epage><pages>911-933</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression.
GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34463962</pmid><doi>10.1002/jcp.30566</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3235-5714</orcidid><orcidid>https://orcid.org/0000-0001-7354-5237</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2022-01, Vol.237 (1), p.911-933 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_2567983019 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alternative splicing Antisense RNA Antisense therapy Cell proliferation Cell Proliferation - genetics Colon Colon cancer Colonic Neoplasms - drug therapy Colonic Neoplasms - genetics Colorectal cancer Colorectal carcinoma Drug Resistance engineered exosomes Exosomes Exosomes - genetics Exosomes - metabolism Fluorescence Fluorescence in situ hybridization Gene expression Gene Expression Regulation, Neoplastic - genetics Gene sequencing Genes GFI1B Humans Immunoprecipitation In Situ Hybridization, Fluorescence Metastases MicroRNAs - genetics MicroRNAs - metabolism Nucleic acids Oxaliplatin Oxaliplatin - pharmacology PGM5‐AS1 Regulatory mechanisms (biology) Reporter gene Ribonucleic acid RNA RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Serine-Arginine Splicing Factors - genetics Serine-Arginine Splicing Factors - metabolism Splicing Transcription Transcriptomes |
title | Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20exosomes%20for%20co%E2%80%90delivery%20of%20PGM5%E2%80%90AS1%20and%20oxaliplatin%20to%20reverse%20drug%20resistance%20in%20colon%20cancer&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Hui,%20Bingqing&rft.date=2022-01&rft.volume=237&rft.issue=1&rft.spage=911&rft.epage=933&rft.pages=911-933&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30566&rft_dat=%3Cproquest_cross%3E2567983019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623969976&rft_id=info:pmid/34463962&rfr_iscdi=true |