Loading…

Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer

Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery du...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2022-01, Vol.237 (1), p.911-933
Main Authors: Hui, Bingqing, Lu, Chen, Wang, Jing, Xu, Yetao, Yang, Yuchen, Ji, Hao, Li, Xiaofei, Xu, Lingyan, Wang, Jiawei, Tang, Weiwei, Wang, Keming, Gu, Yanhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83
cites cdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83
container_end_page 933
container_issue 1
container_start_page 911
container_title Journal of cellular physiology
container_volume 237
creator Hui, Bingqing
Lu, Chen
Wang, Jing
Xu, Yetao
Yang, Yuchen
Ji, Hao
Li, Xiaofei
Xu, Lingyan
Wang, Jiawei
Tang, Weiwei
Wang, Keming
Gu, Yanhong
description Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression. GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.
doi_str_mv 10.1002/jcp.30566
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2567983019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2567983019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWv8cfAEJeNHDav5sss1RilZFUVDPIZvMli3bTU26am8-gs_ok5ja6kHwMsPM_Pj4mA-hfUpOKCHsdGynJ5wIKddQjxJVZLkUbB310o1mSuR0C23HOCaEKMX5JtrieS65kqyH2vN2VLcAARyGNx_9BCKufMDWf75_OGjqFwhz7Ct8P7wVaXX2QLFpHfZvpqmnjZnVLZ55HCBxEbAL3SgNsY4z01rA6Wp941NdjGEXbVSmibC36jvo6eL8cXCZ3dwNrwZnN5nlgsvMEZnMUpYXRsoyLyrKhCPKci5zxo2lfUHLggpiC8KcKCWr-rLIhSppWVWuz3fQ0VJ3GvxzB3GmJ3W00DSmBd9FzYQsVJ8TqhJ6-Acd-y60yZ1mkqUvKVXIRB0vKRt8jAEqPQ31xIS5pkQvQtApBP0dQmIPVopdOQH3S_58PQGnS-C1bmD-v5K-HtwvJb8AaWiQyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623969976</pqid></control><display><type>article</type><title>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hui, Bingqing ; Lu, Chen ; Wang, Jing ; Xu, Yetao ; Yang, Yuchen ; Ji, Hao ; Li, Xiaofei ; Xu, Lingyan ; Wang, Jiawei ; Tang, Weiwei ; Wang, Keming ; Gu, Yanhong</creator><creatorcontrib>Hui, Bingqing ; Lu, Chen ; Wang, Jing ; Xu, Yetao ; Yang, Yuchen ; Ji, Hao ; Li, Xiaofei ; Xu, Lingyan ; Wang, Jiawei ; Tang, Weiwei ; Wang, Keming ; Gu, Yanhong</creatorcontrib><description>Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression. GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30566</identifier><identifier>PMID: 34463962</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alternative splicing ; Antisense RNA ; Antisense therapy ; Cell proliferation ; Cell Proliferation - genetics ; Colon ; Colon cancer ; Colonic Neoplasms - drug therapy ; Colonic Neoplasms - genetics ; Colorectal cancer ; Colorectal carcinoma ; Drug Resistance ; engineered exosomes ; Exosomes ; Exosomes - genetics ; Exosomes - metabolism ; Fluorescence ; Fluorescence in situ hybridization ; Gene expression ; Gene Expression Regulation, Neoplastic - genetics ; Gene sequencing ; Genes ; GFI1B ; Humans ; Immunoprecipitation ; In Situ Hybridization, Fluorescence ; Metastases ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Nucleic acids ; Oxaliplatin ; Oxaliplatin - pharmacology ; PGM5‐AS1 ; Regulatory mechanisms (biology) ; Reporter gene ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Serine-Arginine Splicing Factors - genetics ; Serine-Arginine Splicing Factors - metabolism ; Splicing ; Transcription ; Transcriptomes</subject><ispartof>Journal of cellular physiology, 2022-01, Vol.237 (1), p.911-933</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</citedby><cites>FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</cites><orcidid>0000-0003-3235-5714 ; 0000-0001-7354-5237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34463962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui, Bingqing</creatorcontrib><creatorcontrib>Lu, Chen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xu, Yetao</creatorcontrib><creatorcontrib>Yang, Yuchen</creatorcontrib><creatorcontrib>Ji, Hao</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Xu, Lingyan</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Tang, Weiwei</creatorcontrib><creatorcontrib>Wang, Keming</creatorcontrib><creatorcontrib>Gu, Yanhong</creatorcontrib><title>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression. GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.</description><subject>Alternative splicing</subject><subject>Antisense RNA</subject><subject>Antisense therapy</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - drug therapy</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Drug Resistance</subject><subject>engineered exosomes</subject><subject>Exosomes</subject><subject>Exosomes - genetics</subject><subject>Exosomes - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>GFI1B</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Metastases</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Nucleic acids</subject><subject>Oxaliplatin</subject><subject>Oxaliplatin - pharmacology</subject><subject>PGM5‐AS1</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reporter gene</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Serine-Arginine Splicing Factors - genetics</subject><subject>Serine-Arginine Splicing Factors - metabolism</subject><subject>Splicing</subject><subject>Transcription</subject><subject>Transcriptomes</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9KAzEQxoMoWv8cfAEJeNHDav5sss1RilZFUVDPIZvMli3bTU26am8-gs_ok5ja6kHwMsPM_Pj4mA-hfUpOKCHsdGynJ5wIKddQjxJVZLkUbB310o1mSuR0C23HOCaEKMX5JtrieS65kqyH2vN2VLcAARyGNx_9BCKufMDWf75_OGjqFwhz7Ct8P7wVaXX2QLFpHfZvpqmnjZnVLZ55HCBxEbAL3SgNsY4z01rA6Wp941NdjGEXbVSmibC36jvo6eL8cXCZ3dwNrwZnN5nlgsvMEZnMUpYXRsoyLyrKhCPKci5zxo2lfUHLggpiC8KcKCWr-rLIhSppWVWuz3fQ0VJ3GvxzB3GmJ3W00DSmBd9FzYQsVJ8TqhJ6-Acd-y60yZ1mkqUvKVXIRB0vKRt8jAEqPQ31xIS5pkQvQtApBP0dQmIPVopdOQH3S_58PQGnS-C1bmD-v5K-HtwvJb8AaWiQyg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Hui, Bingqing</creator><creator>Lu, Chen</creator><creator>Wang, Jing</creator><creator>Xu, Yetao</creator><creator>Yang, Yuchen</creator><creator>Ji, Hao</creator><creator>Li, Xiaofei</creator><creator>Xu, Lingyan</creator><creator>Wang, Jiawei</creator><creator>Tang, Weiwei</creator><creator>Wang, Keming</creator><creator>Gu, Yanhong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3235-5714</orcidid><orcidid>https://orcid.org/0000-0001-7354-5237</orcidid></search><sort><creationdate>202201</creationdate><title>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</title><author>Hui, Bingqing ; Lu, Chen ; Wang, Jing ; Xu, Yetao ; Yang, Yuchen ; Ji, Hao ; Li, Xiaofei ; Xu, Lingyan ; Wang, Jiawei ; Tang, Weiwei ; Wang, Keming ; Gu, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative splicing</topic><topic>Antisense RNA</topic><topic>Antisense therapy</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - drug therapy</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Drug Resistance</topic><topic>engineered exosomes</topic><topic>Exosomes</topic><topic>Exosomes - genetics</topic><topic>Exosomes - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>GFI1B</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Metastases</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Nucleic acids</topic><topic>Oxaliplatin</topic><topic>Oxaliplatin - pharmacology</topic><topic>PGM5‐AS1</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reporter gene</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Serine-Arginine Splicing Factors - genetics</topic><topic>Serine-Arginine Splicing Factors - metabolism</topic><topic>Splicing</topic><topic>Transcription</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Bingqing</creatorcontrib><creatorcontrib>Lu, Chen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xu, Yetao</creatorcontrib><creatorcontrib>Yang, Yuchen</creatorcontrib><creatorcontrib>Ji, Hao</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Xu, Lingyan</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Tang, Weiwei</creatorcontrib><creatorcontrib>Wang, Keming</creatorcontrib><creatorcontrib>Gu, Yanhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Bingqing</au><au>Lu, Chen</au><au>Wang, Jing</au><au>Xu, Yetao</au><au>Yang, Yuchen</au><au>Ji, Hao</au><au>Li, Xiaofei</au><au>Xu, Lingyan</au><au>Wang, Jiawei</au><au>Tang, Weiwei</au><au>Wang, Keming</au><au>Gu, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2022-01</date><risdate>2022</risdate><volume>237</volume><issue>1</issue><spage>911</spage><epage>933</epage><pages>911-933</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5‐AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5‐AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5‐AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5‐AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5‐AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual‐luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5‐AS1 activates alternate splicing to downregulate PAEP expression. For hsa‐miR‐423‐5p, PGM5‐AS1 can also act as a sponge to upregulate the NME1 expression. GFI1B inhibits the transcription of PGM5 antisense RNA 1 (PGM5‐AS1), which recruits SRSF3 to downregulate PAEP and competitively binds with hsa‐miR‐423‐5p to upregulate NME1 to suppress the malignant phenotype of colorectal cancer (CRC). Engineered exosomes co‐delivering PGM5‐AS1 and oxaliplatin reverses drug resistance in CRC.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34463962</pmid><doi>10.1002/jcp.30566</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3235-5714</orcidid><orcidid>https://orcid.org/0000-0001-7354-5237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2022-01, Vol.237 (1), p.911-933
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2567983019
source Wiley-Blackwell Read & Publish Collection
subjects Alternative splicing
Antisense RNA
Antisense therapy
Cell proliferation
Cell Proliferation - genetics
Colon
Colon cancer
Colonic Neoplasms - drug therapy
Colonic Neoplasms - genetics
Colorectal cancer
Colorectal carcinoma
Drug Resistance
engineered exosomes
Exosomes
Exosomes - genetics
Exosomes - metabolism
Fluorescence
Fluorescence in situ hybridization
Gene expression
Gene Expression Regulation, Neoplastic - genetics
Gene sequencing
Genes
GFI1B
Humans
Immunoprecipitation
In Situ Hybridization, Fluorescence
Metastases
MicroRNAs - genetics
MicroRNAs - metabolism
Nucleic acids
Oxaliplatin
Oxaliplatin - pharmacology
PGM5‐AS1
Regulatory mechanisms (biology)
Reporter gene
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Serine-Arginine Splicing Factors - genetics
Serine-Arginine Splicing Factors - metabolism
Splicing
Transcription
Transcriptomes
title Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20exosomes%20for%20co%E2%80%90delivery%20of%20PGM5%E2%80%90AS1%20and%20oxaliplatin%20to%20reverse%20drug%20resistance%20in%20colon%20cancer&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Hui,%20Bingqing&rft.date=2022-01&rft.volume=237&rft.issue=1&rft.spage=911&rft.epage=933&rft.pages=911-933&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30566&rft_dat=%3Cproquest_cross%3E2567983019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3536-d060001247a66b47f125d09c336423ac1851b7150c702d5b62f867459b1bffd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623969976&rft_id=info:pmid/34463962&rfr_iscdi=true