Loading…

Utility of machine learning algorithms in degenerative cervical and lumbar spine disease: a systematic review

Machine learning is a rapidly evolving field that offers physicians an innovative and comprehensive mechanism to examine various aspects of patient data. Cervical and lumbar degenerative spine disorders are commonly age-related disease processes that can utilize machine learning to improve patient o...

Full description

Saved in:
Bibliographic Details
Published in:Neurosurgical review 2022-04, Vol.45 (2), p.965-978
Main Authors: Stephens, Mark E., O’Neal, Christen M., Westrup, Alison M., Muhammad, Fauziyya Y., McKenzie, Daniel M., Fagg, Andrew H., Smith, Zachary A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Machine learning is a rapidly evolving field that offers physicians an innovative and comprehensive mechanism to examine various aspects of patient data. Cervical and lumbar degenerative spine disorders are commonly age-related disease processes that can utilize machine learning to improve patient outcomes with careful patient selection and intervention. The aim of this study is to examine the current applications of machine learning in cervical and lumbar degenerative spine disease. A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A search of PubMed, Embase, Medline, and Cochrane was conducted through May 31st, 2020, using the following terms: “artificial intelligence” OR “machine learning” AND “neurosurgery” AND “spine.” Studies were included if original research on machine learning was utilized in patient care for degenerative spine disease, including radiographic machine learning applications. Studies focusing on robotic applications in neurosurgery, navigation, or stereotactic radiosurgery were excluded. The literature search identified 296 papers, with 35 articles meeting inclusion criteria. There were nine studies involving cervical degenerative spine disease and 26 studies on lumbar degenerative spine disease. The majority of studies for both cervical and lumbar spines utilized machine learning for the prediction of postoperative outcomes, with 5 (55.6%) and 15 (61.5%) studies, respectively. Machine learning applications focusing on degenerative lumbar spine greatly outnumber the current volume of cervical spine studies. The current research in lumbar spine also demonstrates more advanced clinical applications of radiographic, diagnostic, and predictive machine learning models.
ISSN:1437-2320
1437-2320
DOI:10.1007/s10143-021-01624-z