Loading…
Optimized strategies for (BiO)2CO3 and its application in the environment
Photocatalysis is a new type of technology, which has been developed rapidly for solving environmental problems such as wastewater or air pollutants in recent years. Also, the effective performance and non-secondary pollution of photocatalytic technology attract much attention from researchers. As a...
Saved in:
Published in: | Environmental science and pollution research international 2021-10, Vol.28 (40), p.56003-56031 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photocatalysis is a new type of technology, which has been developed rapidly for solving environmental problems such as wastewater or air pollutants in recent years. Also, the effective performance and non-secondary pollution of photocatalytic technology attract much attention from researchers. As a “sillén” phase oxide, the (BiO)
2
CO
3
(BOC) is a great potential photocatalyst attributing to composed of alternate Bi
2
O
2
2+
and CO
3
2−
layers, which is a benefit for transportation of electrons. Besides, BOC has attracted much attention from researchers because of its excellent characters of non-toxic, environmentally friendly, and low-cost. However, BOC has a defect on wide band gap, which is limited for the usage of visible light, so a great number of published papers focus on the modifications of BOC to improve its photocatalytic efficiency. This article mainly summarizes the modifications of BOC and its application in the environment, guiding for designing BOC-based materials with high photocatalytic activity driven by light. Moreover, the research trend and prospect of BOC photocatalyst were briefly summarized, which could lay the foundation for forming a green and efficient BOC-based photocatalytic reaction system. Importantly, this review might provide a theoretical basis and guidance for further research in this field.
Graphical abstract |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-16185-3 |