Loading…
Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds
The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native su...
Saved in:
Published in: | ACS biomaterials science & engineering 2023-07, Vol.9 (7), p.3962-3971 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13 |
---|---|
cites | cdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13 |
container_end_page | 3971 |
container_issue | 7 |
container_start_page | 3962 |
container_title | ACS biomaterials science & engineering |
container_volume | 9 |
creator | Martin, Cassandra L. Zhai, Chenxi Paten, Jeffrey A. Yeo, Jingjie Deravi, Leila F. |
description | The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications. |
doi_str_mv | 10.1021/acsbiomaterials.1c00566 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571928438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571928438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EolXpK0COXFL8E8fOsQqUIlUCCXqO7NgurpK42MkBnh7TFoS4cNldab-ZXQ0AVwjOEMToRtRBWteKXnsrmjBDNYQ0z0_AGBNG0oIzfvprHoFpCFsIISKcZll2DkYkozBHEI3B-lYHu-kS0ankyTs11L11XeJMUg6hd639ELLR-_XSbl6b92TeRF6rZGGlt00jfFK62Da6S55rYYxrVLgAZyZ-pqfHPgHrxd1LuUxXj_cP5XyVCkJZnxJMEc1ZXbAMCq0whpKbWIyOVQlMMywV4kZRpgspCZU1F3lRKIgxMwaRCbg--O68ext06KvWhlrHdzrthlBhylCBeUZ4RNkBrb0LwWtT7bxthX-vEKy-Yq3-xFodY43Ky-ORQbZa_ei-Q4wAOQDRodq6wXd7-T-2n4aIijg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571928438</pqid></control><display><type>article</type><title>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Martin, Cassandra L. ; Zhai, Chenxi ; Paten, Jeffrey A. ; Yeo, Jingjie ; Deravi, Leila F.</creator><creatorcontrib>Martin, Cassandra L. ; Zhai, Chenxi ; Paten, Jeffrey A. ; Yeo, Jingjie ; Deravi, Leila F.</creatorcontrib><description>The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.1c00566</identifier><identifier>PMID: 34506101</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Collagen ; Collagen Type I ; Fibrillar Collagens ; Tissue Engineering</subject><ispartof>ACS biomaterials science & engineering, 2023-07, Vol.9 (7), p.3962-3971</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</citedby><cites>FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</cites><orcidid>0000-0002-6462-7422 ; 0000-0003-2913-3328 ; 0000-0003-3226-2470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34506101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Cassandra L.</creatorcontrib><creatorcontrib>Zhai, Chenxi</creatorcontrib><creatorcontrib>Paten, Jeffrey A.</creatorcontrib><creatorcontrib>Yeo, Jingjie</creatorcontrib><creatorcontrib>Deravi, Leila F.</creatorcontrib><title>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</title><title>ACS biomaterials science & engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.</description><subject>Collagen</subject><subject>Collagen Type I</subject><subject>Fibrillar Collagens</subject><subject>Tissue Engineering</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EolXpK0COXFL8E8fOsQqUIlUCCXqO7NgurpK42MkBnh7TFoS4cNldab-ZXQ0AVwjOEMToRtRBWteKXnsrmjBDNYQ0z0_AGBNG0oIzfvprHoFpCFsIISKcZll2DkYkozBHEI3B-lYHu-kS0ankyTs11L11XeJMUg6hd639ELLR-_XSbl6b92TeRF6rZGGlt00jfFK62Da6S55rYYxrVLgAZyZ-pqfHPgHrxd1LuUxXj_cP5XyVCkJZnxJMEc1ZXbAMCq0whpKbWIyOVQlMMywV4kZRpgspCZU1F3lRKIgxMwaRCbg--O68ext06KvWhlrHdzrthlBhylCBeUZ4RNkBrb0LwWtT7bxthX-vEKy-Yq3-xFodY43Ky-ORQbZa_ei-Q4wAOQDRodq6wXd7-T-2n4aIijg</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Martin, Cassandra L.</creator><creator>Zhai, Chenxi</creator><creator>Paten, Jeffrey A.</creator><creator>Yeo, Jingjie</creator><creator>Deravi, Leila F.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6462-7422</orcidid><orcidid>https://orcid.org/0000-0003-2913-3328</orcidid><orcidid>https://orcid.org/0000-0003-3226-2470</orcidid></search><sort><creationdate>20230710</creationdate><title>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</title><author>Martin, Cassandra L. ; Zhai, Chenxi ; Paten, Jeffrey A. ; Yeo, Jingjie ; Deravi, Leila F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collagen</topic><topic>Collagen Type I</topic><topic>Fibrillar Collagens</topic><topic>Tissue Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Martin, Cassandra L.</creatorcontrib><creatorcontrib>Zhai, Chenxi</creatorcontrib><creatorcontrib>Paten, Jeffrey A.</creatorcontrib><creatorcontrib>Yeo, Jingjie</creatorcontrib><creatorcontrib>Deravi, Leila F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Cassandra L.</au><au>Zhai, Chenxi</au><au>Paten, Jeffrey A.</au><au>Yeo, Jingjie</au><au>Deravi, Leila F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</atitle><jtitle>ACS biomaterials science & engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2023-07-10</date><risdate>2023</risdate><volume>9</volume><issue>7</issue><spage>3962</spage><epage>3971</epage><pages>3962-3971</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34506101</pmid><doi>10.1021/acsbiomaterials.1c00566</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6462-7422</orcidid><orcidid>https://orcid.org/0000-0003-2913-3328</orcidid><orcidid>https://orcid.org/0000-0003-3226-2470</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-9878 |
ispartof | ACS biomaterials science & engineering, 2023-07, Vol.9 (7), p.3962-3971 |
issn | 2373-9878 2373-9878 |
language | eng |
recordid | cdi_proquest_miscellaneous_2571928438 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Collagen Collagen Type I Fibrillar Collagens Tissue Engineering |
title | Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Production%20of%20Customizable%20and%20Highly%20Aligned%20Fibrillar%20Collagen%20Scaffolds&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Martin,%20Cassandra%20L.&rft.date=2023-07-10&rft.volume=9&rft.issue=7&rft.spage=3962&rft.epage=3971&rft.pages=3962-3971&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.1c00566&rft_dat=%3Cproquest_cross%3E2571928438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571928438&rft_id=info:pmid/34506101&rfr_iscdi=true |