Loading…

Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds

The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native su...

Full description

Saved in:
Bibliographic Details
Published in:ACS biomaterials science & engineering 2023-07, Vol.9 (7), p.3962-3971
Main Authors: Martin, Cassandra L., Zhai, Chenxi, Paten, Jeffrey A., Yeo, Jingjie, Deravi, Leila F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13
cites cdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13
container_end_page 3971
container_issue 7
container_start_page 3962
container_title ACS biomaterials science & engineering
container_volume 9
creator Martin, Cassandra L.
Zhai, Chenxi
Paten, Jeffrey A.
Yeo, Jingjie
Deravi, Leila F.
description The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.
doi_str_mv 10.1021/acsbiomaterials.1c00566
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571928438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571928438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EolXpK0COXFL8E8fOsQqUIlUCCXqO7NgurpK42MkBnh7TFoS4cNldab-ZXQ0AVwjOEMToRtRBWteKXnsrmjBDNYQ0z0_AGBNG0oIzfvprHoFpCFsIISKcZll2DkYkozBHEI3B-lYHu-kS0ankyTs11L11XeJMUg6hd639ELLR-_XSbl6b92TeRF6rZGGlt00jfFK62Da6S55rYYxrVLgAZyZ-pqfHPgHrxd1LuUxXj_cP5XyVCkJZnxJMEc1ZXbAMCq0whpKbWIyOVQlMMywV4kZRpgspCZU1F3lRKIgxMwaRCbg--O68ext06KvWhlrHdzrthlBhylCBeUZ4RNkBrb0LwWtT7bxthX-vEKy-Yq3-xFodY43Ky-ORQbZa_ei-Q4wAOQDRodq6wXd7-T-2n4aIijg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571928438</pqid></control><display><type>article</type><title>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Martin, Cassandra L. ; Zhai, Chenxi ; Paten, Jeffrey A. ; Yeo, Jingjie ; Deravi, Leila F.</creator><creatorcontrib>Martin, Cassandra L. ; Zhai, Chenxi ; Paten, Jeffrey A. ; Yeo, Jingjie ; Deravi, Leila F.</creatorcontrib><description>The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.1c00566</identifier><identifier>PMID: 34506101</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Collagen ; Collagen Type I ; Fibrillar Collagens ; Tissue Engineering</subject><ispartof>ACS biomaterials science &amp; engineering, 2023-07, Vol.9 (7), p.3962-3971</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</citedby><cites>FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</cites><orcidid>0000-0002-6462-7422 ; 0000-0003-2913-3328 ; 0000-0003-3226-2470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34506101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Cassandra L.</creatorcontrib><creatorcontrib>Zhai, Chenxi</creatorcontrib><creatorcontrib>Paten, Jeffrey A.</creatorcontrib><creatorcontrib>Yeo, Jingjie</creatorcontrib><creatorcontrib>Deravi, Leila F.</creatorcontrib><title>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.</description><subject>Collagen</subject><subject>Collagen Type I</subject><subject>Fibrillar Collagens</subject><subject>Tissue Engineering</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EolXpK0COXFL8E8fOsQqUIlUCCXqO7NgurpK42MkBnh7TFoS4cNldab-ZXQ0AVwjOEMToRtRBWteKXnsrmjBDNYQ0z0_AGBNG0oIzfvprHoFpCFsIISKcZll2DkYkozBHEI3B-lYHu-kS0ankyTs11L11XeJMUg6hd639ELLR-_XSbl6b92TeRF6rZGGlt00jfFK62Da6S55rYYxrVLgAZyZ-pqfHPgHrxd1LuUxXj_cP5XyVCkJZnxJMEc1ZXbAMCq0whpKbWIyOVQlMMywV4kZRpgspCZU1F3lRKIgxMwaRCbg--O68ext06KvWhlrHdzrthlBhylCBeUZ4RNkBrb0LwWtT7bxthX-vEKy-Yq3-xFodY43Ky-ORQbZa_ei-Q4wAOQDRodq6wXd7-T-2n4aIijg</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Martin, Cassandra L.</creator><creator>Zhai, Chenxi</creator><creator>Paten, Jeffrey A.</creator><creator>Yeo, Jingjie</creator><creator>Deravi, Leila F.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6462-7422</orcidid><orcidid>https://orcid.org/0000-0003-2913-3328</orcidid><orcidid>https://orcid.org/0000-0003-3226-2470</orcidid></search><sort><creationdate>20230710</creationdate><title>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</title><author>Martin, Cassandra L. ; Zhai, Chenxi ; Paten, Jeffrey A. ; Yeo, Jingjie ; Deravi, Leila F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collagen</topic><topic>Collagen Type I</topic><topic>Fibrillar Collagens</topic><topic>Tissue Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Martin, Cassandra L.</creatorcontrib><creatorcontrib>Zhai, Chenxi</creatorcontrib><creatorcontrib>Paten, Jeffrey A.</creatorcontrib><creatorcontrib>Yeo, Jingjie</creatorcontrib><creatorcontrib>Deravi, Leila F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Cassandra L.</au><au>Zhai, Chenxi</au><au>Paten, Jeffrey A.</au><au>Yeo, Jingjie</au><au>Deravi, Leila F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2023-07-10</date><risdate>2023</risdate><volume>9</volume><issue>7</issue><spage>3962</spage><epage>3971</epage><pages>3962-3971</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34506101</pmid><doi>10.1021/acsbiomaterials.1c00566</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6462-7422</orcidid><orcidid>https://orcid.org/0000-0003-2913-3328</orcidid><orcidid>https://orcid.org/0000-0003-3226-2470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2023-07, Vol.9 (7), p.3962-3971
issn 2373-9878
2373-9878
language eng
recordid cdi_proquest_miscellaneous_2571928438
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Collagen
Collagen Type I
Fibrillar Collagens
Tissue Engineering
title Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Production%20of%20Customizable%20and%20Highly%20Aligned%20Fibrillar%20Collagen%20Scaffolds&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Martin,%20Cassandra%20L.&rft.date=2023-07-10&rft.volume=9&rft.issue=7&rft.spage=3962&rft.epage=3971&rft.pages=3962-3971&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.1c00566&rft_dat=%3Cproquest_cross%3E2571928438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a357t-3251567c9740aed220b8f20bfef20da2542bd18fd57e9bb35bc8a699d0227ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571928438&rft_id=info:pmid/34506101&rfr_iscdi=true