Loading…
Effect of Sampling Rate and Data Pretreatment for Targeted and Nontargeted Analysis by Means of Liquid Chromatography Coupled to Drift Time Ion Mobility Quadruple Time-of-Flight Mass Spectrometry
Ion mobility as an additional separation dimension can help to resolve and annotate metabolite and lipid biomarkers and provides important information about the components in a sample. Identifying relevant information in the resulting data is challenging because of the complexity of the data and dat...
Saved in:
Published in: | Journal of the American Society for Mass Spectrometry 2021-10, Vol.32 (10), p.2592-2603 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ion mobility as an additional separation dimension can help to resolve and annotate metabolite and lipid biomarkers and provides important information about the components in a sample. Identifying relevant information in the resulting data is challenging because of the complexity of the data and data evaluation strategies for both targeted or nontargeted workflows. Frequently, feature analysis is used as a first step to search for differences between samples in discovery workflows. However, follow-up experimentation often leads to more targeted data extraction methods. In both cases, optimizing data sets for data extraction can make an important contribution to the overall results. In this work, we evaluate the effect of experimental conditions including acquisition sampling rate and data pretreatment on lipid standards and lipid extracts as examples of complex biological samples analyzed by liquid chromatography coupled to drift time ion mobility quadrupole time-of-flight mass spectrometry. The results show that a reduction of both peak variation and background noise can be achieved by optimizing the sampling rate. The use of data pretreatment including data smoothing, intensity thresholding, and spike removal also play an important role in improving detection and annotation of analytes from complex biological samples, whereas nonoptimal data sampling rates and preprocessing can lead to adverse effects including the loss or alternation of small, or closely eluting, low-abundant peaks. |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1021/jasms.1c00217 |