Loading…

A microchip device based liquid-liquid-solid microextraction for the determination of permethrin and cypermethrin in water samples

In this work, for the first time, a microchip device integrating liquid-liquid-solid phase microextraction is presented. As a novel approach to microchip systems, liquid-liquid-solid microextraction was performed in a sandwiched microchip device. The microchip device consisted of three poly(methyl m...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) 2021-12, Vol.235, p.122731-122731, Article 122731
Main Authors: Dowlatshah, Samira, Ramos-Payán, María, Saraji, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, for the first time, a microchip device integrating liquid-liquid-solid phase microextraction is presented. As a novel approach to microchip systems, liquid-liquid-solid microextraction was performed in a sandwiched microchip device. The microchip device consisted of three poly(methyl methacrylate) layers along with a double “Y”-shaped microchannel. As the stationary phase, polyacrylonitrile-C18 was synthesized and immobilized in the upper channel, while the beneath channel was used as a reservoir for the stagnant volume ratio of sample-to-extraction solvent phase. In this way, analytes were extracted from an aqueous sample through an organic phase into the stationary phase. The analytes were finally desorbed with a minimum amount of acetonitrile as the desorption solvent. Permethrin and cypermethrin were selected as the model analytes for extraction and subsequent analysis by gas chromatography-flame ionization detection. Under optimum conditions (extraction solvent; n-hexane, sample -to-extraction solvent volume ratio; 2:1, extraction time; 20 min, desorption solvent; acetonitrile, desorption volume; 200 μL, and desorption time; 15 min) detection limits were 3.5 and 6.0 ng mL−1 for permethrin and cypermethrin, respectively. Relative standard deviations for intra- and inter-day reproducibility were below 8.3%. Device-to-device precision was in the range of 8.1–9.6%. The proposed microchip device was successfully applied to determine permethrin and cypermethrin in water samples with recoveries in the range of 73–96%. [Display omitted] •The microchip device integrating liquid-liquid-solid phase microextraction was presented.•The two conventional microextraction techniques were coupled in a sandwiched microchip device.•The method exhibited more environmental and economic advantages.•The microchip device was successfully applied for the determination of permethrin and cypermethrin in the samples.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2021.122731