Loading…
Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition
In this work, mesoporous poorly crystalline hematite (α-Fe2O3) was prepared using mesoporous silica (KIT-6) functionalized with 3-[(2-aminoethyl)amino]propyltrimethoxysilane as a hard template (SMPC-α-Fe2O3). The disordered atomic arrangement structure of SMPC-α-Fe2O3 promoted the formation of oxyge...
Saved in:
Published in: | The Science of the total environment 2022-01, Vol.804, p.150161-150161, Article 150161 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3 |
container_end_page | 150161 |
container_issue | |
container_start_page | 150161 |
container_title | The Science of the total environment |
container_volume | 804 |
creator | Liang, Xiaoshan Wang, Lisha Wen, Tiancheng Liu, Huijuan Zhang, Jian Liu, Zhu Zhu, Chengzhang Long, Chao |
description | In this work, mesoporous poorly crystalline hematite (α-Fe2O3) was prepared using mesoporous silica (KIT-6) functionalized with 3-[(2-aminoethyl)amino]propyltrimethoxysilane as a hard template (SMPC-α-Fe2O3). The disordered atomic arrangement structure of SMPC-α-Fe2O3 promoted the formation of oxygen vacancies, which was confirmed using X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and in situ diffuse reflectance infrared Fourier transform (DRIFT) analyses. Density functional theory calculations (DFT) also proved that reducing the crystallinity of α-Fe2O3 decreased the formation energy of oxygen vacancies. TPD and in situ DRIFT analyses of NH3 adsorption suggested that the surface acidity of SMPC-α-Fe2O3 was considerably higher than those of mesoporous poorly crystalline α-Fe2O3 (MPC-α-Fe2O3) and highly crystalline α-Fe2O3 (HC-α-Fe2O3). The oxygen vacancies and acid sites formed on α-Fe2O3 surface are beneficial for ozone (O3) decomposition. Compared with MPC-α-Fe2O3 and HC-α-Fe2O3, SMPC-α-Fe2O3 exhibited a higher removal efficiency for 200-ppm O3 at a space velocity of 720 L g−1 h−1 at 25 ± 2 °C under dry conditions. Additionally, in situ DRIFT and XPS results suggested that the accumulation of peroxide (O22−) and the conversion of O22− to lattice oxygen over the oxygen vacancies caused catalyst deactivation. However, O22− could be desorbed completely by continuous N2 purging at approximately 350 °C. This study provides significant insights for developing highly active α-Fe2O3 catalysts for O3 decomposition.
[Display omitted]
•Mesoporous poorly crystalline α-Fe2O3 exhibited efficient ozone removal.•Mesoporous poor crystallized α-Fe2O3 owned abundant oxygen vacancies and acid sites.•DFT calculation proved that reducing the crystallinity of α-Fe2O3 lowered the formation energy of oxygen vacancy.•The catalysts deactivation was attributed to the aggregation of O22− on oxygen vacancies. |
doi_str_mv | 10.1016/j.scitotenv.2021.150161 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572530342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969721052384</els_id><sourcerecordid>2572530342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3</originalsourceid><addsrcrecordid>eNqFkM1OGzEUha2qSE2BZ6iXbGbwz3g8s0QRKUhBbGBteew71NHEntpO2vBWvAjPVEdB3XI3V_fo3COdD6EflNSU0PZ6Uyfjcsjg9zUjjNZUFJl-QQvayb6ihLVf0YKQpqv6tpff0PeUNqSM7OgCTQ-Qwhxi2CU8hxCnAzbxkLKeJucBv79VK2CPHP9x-RfWw85b7TMOfw8v4PFeG-2Ng4S1t1gbZ3FyuZxjiDi8hhJgwYTtHIrsgr9AZ6OeElx-7HP0vLp9Wt5V68ef98ubdWV40-WKS9lZPdpWay7YOLREMM6bfhDCWEYk73nLJfCRkHagnA_NQLoeOAgDIPqRn6OrU-4cw-8dpKy2LhmYJu2hFFVMSCY44Q0rVnmymhhSijCqObqtjgdFiTryVRv1n6868lUnvuXz5vQJpcneQTz6wBuwLoLJygb3acY_7NSKog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572530342</pqid></control><display><type>article</type><title>Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition</title><source>ScienceDirect Journals</source><creator>Liang, Xiaoshan ; Wang, Lisha ; Wen, Tiancheng ; Liu, Huijuan ; Zhang, Jian ; Liu, Zhu ; Zhu, Chengzhang ; Long, Chao</creator><creatorcontrib>Liang, Xiaoshan ; Wang, Lisha ; Wen, Tiancheng ; Liu, Huijuan ; Zhang, Jian ; Liu, Zhu ; Zhu, Chengzhang ; Long, Chao</creatorcontrib><description>In this work, mesoporous poorly crystalline hematite (α-Fe2O3) was prepared using mesoporous silica (KIT-6) functionalized with 3-[(2-aminoethyl)amino]propyltrimethoxysilane as a hard template (SMPC-α-Fe2O3). The disordered atomic arrangement structure of SMPC-α-Fe2O3 promoted the formation of oxygen vacancies, which was confirmed using X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and in situ diffuse reflectance infrared Fourier transform (DRIFT) analyses. Density functional theory calculations (DFT) also proved that reducing the crystallinity of α-Fe2O3 decreased the formation energy of oxygen vacancies. TPD and in situ DRIFT analyses of NH3 adsorption suggested that the surface acidity of SMPC-α-Fe2O3 was considerably higher than those of mesoporous poorly crystalline α-Fe2O3 (MPC-α-Fe2O3) and highly crystalline α-Fe2O3 (HC-α-Fe2O3). The oxygen vacancies and acid sites formed on α-Fe2O3 surface are beneficial for ozone (O3) decomposition. Compared with MPC-α-Fe2O3 and HC-α-Fe2O3, SMPC-α-Fe2O3 exhibited a higher removal efficiency for 200-ppm O3 at a space velocity of 720 L g−1 h−1 at 25 ± 2 °C under dry conditions. Additionally, in situ DRIFT and XPS results suggested that the accumulation of peroxide (O22−) and the conversion of O22− to lattice oxygen over the oxygen vacancies caused catalyst deactivation. However, O22− could be desorbed completely by continuous N2 purging at approximately 350 °C. This study provides significant insights for developing highly active α-Fe2O3 catalysts for O3 decomposition.
[Display omitted]
•Mesoporous poorly crystalline α-Fe2O3 exhibited efficient ozone removal.•Mesoporous poor crystallized α-Fe2O3 owned abundant oxygen vacancies and acid sites.•DFT calculation proved that reducing the crystallinity of α-Fe2O3 lowered the formation energy of oxygen vacancy.•The catalysts deactivation was attributed to the aggregation of O22− on oxygen vacancies.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2021.150161</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Mesoporous structure ; Oxygen vacancy ; Ozone decomposition ; Poorly crystalline structure ; α-Fe2O3</subject><ispartof>The Science of the total environment, 2022-01, Vol.804, p.150161-150161, Article 150161</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3</citedby><cites>FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liang, Xiaoshan</creatorcontrib><creatorcontrib>Wang, Lisha</creatorcontrib><creatorcontrib>Wen, Tiancheng</creatorcontrib><creatorcontrib>Liu, Huijuan</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Liu, Zhu</creatorcontrib><creatorcontrib>Zhu, Chengzhang</creatorcontrib><creatorcontrib>Long, Chao</creatorcontrib><title>Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition</title><title>The Science of the total environment</title><description>In this work, mesoporous poorly crystalline hematite (α-Fe2O3) was prepared using mesoporous silica (KIT-6) functionalized with 3-[(2-aminoethyl)amino]propyltrimethoxysilane as a hard template (SMPC-α-Fe2O3). The disordered atomic arrangement structure of SMPC-α-Fe2O3 promoted the formation of oxygen vacancies, which was confirmed using X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and in situ diffuse reflectance infrared Fourier transform (DRIFT) analyses. Density functional theory calculations (DFT) also proved that reducing the crystallinity of α-Fe2O3 decreased the formation energy of oxygen vacancies. TPD and in situ DRIFT analyses of NH3 adsorption suggested that the surface acidity of SMPC-α-Fe2O3 was considerably higher than those of mesoporous poorly crystalline α-Fe2O3 (MPC-α-Fe2O3) and highly crystalline α-Fe2O3 (HC-α-Fe2O3). The oxygen vacancies and acid sites formed on α-Fe2O3 surface are beneficial for ozone (O3) decomposition. Compared with MPC-α-Fe2O3 and HC-α-Fe2O3, SMPC-α-Fe2O3 exhibited a higher removal efficiency for 200-ppm O3 at a space velocity of 720 L g−1 h−1 at 25 ± 2 °C under dry conditions. Additionally, in situ DRIFT and XPS results suggested that the accumulation of peroxide (O22−) and the conversion of O22− to lattice oxygen over the oxygen vacancies caused catalyst deactivation. However, O22− could be desorbed completely by continuous N2 purging at approximately 350 °C. This study provides significant insights for developing highly active α-Fe2O3 catalysts for O3 decomposition.
[Display omitted]
•Mesoporous poorly crystalline α-Fe2O3 exhibited efficient ozone removal.•Mesoporous poor crystallized α-Fe2O3 owned abundant oxygen vacancies and acid sites.•DFT calculation proved that reducing the crystallinity of α-Fe2O3 lowered the formation energy of oxygen vacancy.•The catalysts deactivation was attributed to the aggregation of O22− on oxygen vacancies.</description><subject>Mesoporous structure</subject><subject>Oxygen vacancy</subject><subject>Ozone decomposition</subject><subject>Poorly crystalline structure</subject><subject>α-Fe2O3</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OGzEUha2qSE2BZ6iXbGbwz3g8s0QRKUhBbGBteew71NHEntpO2vBWvAjPVEdB3XI3V_fo3COdD6EflNSU0PZ6Uyfjcsjg9zUjjNZUFJl-QQvayb6ihLVf0YKQpqv6tpff0PeUNqSM7OgCTQ-Qwhxi2CU8hxCnAzbxkLKeJucBv79VK2CPHP9x-RfWw85b7TMOfw8v4PFeG-2Ng4S1t1gbZ3FyuZxjiDi8hhJgwYTtHIrsgr9AZ6OeElx-7HP0vLp9Wt5V68ef98ubdWV40-WKS9lZPdpWay7YOLREMM6bfhDCWEYk73nLJfCRkHagnA_NQLoeOAgDIPqRn6OrU-4cw-8dpKy2LhmYJu2hFFVMSCY44Q0rVnmymhhSijCqObqtjgdFiTryVRv1n6868lUnvuXz5vQJpcneQTz6wBuwLoLJygb3acY_7NSKog</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Liang, Xiaoshan</creator><creator>Wang, Lisha</creator><creator>Wen, Tiancheng</creator><creator>Liu, Huijuan</creator><creator>Zhang, Jian</creator><creator>Liu, Zhu</creator><creator>Zhu, Chengzhang</creator><creator>Long, Chao</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220115</creationdate><title>Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition</title><author>Liang, Xiaoshan ; Wang, Lisha ; Wen, Tiancheng ; Liu, Huijuan ; Zhang, Jian ; Liu, Zhu ; Zhu, Chengzhang ; Long, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mesoporous structure</topic><topic>Oxygen vacancy</topic><topic>Ozone decomposition</topic><topic>Poorly crystalline structure</topic><topic>α-Fe2O3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiaoshan</creatorcontrib><creatorcontrib>Wang, Lisha</creatorcontrib><creatorcontrib>Wen, Tiancheng</creatorcontrib><creatorcontrib>Liu, Huijuan</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Liu, Zhu</creatorcontrib><creatorcontrib>Zhu, Chengzhang</creatorcontrib><creatorcontrib>Long, Chao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiaoshan</au><au>Wang, Lisha</au><au>Wen, Tiancheng</au><au>Liu, Huijuan</au><au>Zhang, Jian</au><au>Liu, Zhu</au><au>Zhu, Chengzhang</au><au>Long, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition</atitle><jtitle>The Science of the total environment</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>804</volume><spage>150161</spage><epage>150161</epage><pages>150161-150161</pages><artnum>150161</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>In this work, mesoporous poorly crystalline hematite (α-Fe2O3) was prepared using mesoporous silica (KIT-6) functionalized with 3-[(2-aminoethyl)amino]propyltrimethoxysilane as a hard template (SMPC-α-Fe2O3). The disordered atomic arrangement structure of SMPC-α-Fe2O3 promoted the formation of oxygen vacancies, which was confirmed using X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and in situ diffuse reflectance infrared Fourier transform (DRIFT) analyses. Density functional theory calculations (DFT) also proved that reducing the crystallinity of α-Fe2O3 decreased the formation energy of oxygen vacancies. TPD and in situ DRIFT analyses of NH3 adsorption suggested that the surface acidity of SMPC-α-Fe2O3 was considerably higher than those of mesoporous poorly crystalline α-Fe2O3 (MPC-α-Fe2O3) and highly crystalline α-Fe2O3 (HC-α-Fe2O3). The oxygen vacancies and acid sites formed on α-Fe2O3 surface are beneficial for ozone (O3) decomposition. Compared with MPC-α-Fe2O3 and HC-α-Fe2O3, SMPC-α-Fe2O3 exhibited a higher removal efficiency for 200-ppm O3 at a space velocity of 720 L g−1 h−1 at 25 ± 2 °C under dry conditions. Additionally, in situ DRIFT and XPS results suggested that the accumulation of peroxide (O22−) and the conversion of O22− to lattice oxygen over the oxygen vacancies caused catalyst deactivation. However, O22− could be desorbed completely by continuous N2 purging at approximately 350 °C. This study provides significant insights for developing highly active α-Fe2O3 catalysts for O3 decomposition.
[Display omitted]
•Mesoporous poorly crystalline α-Fe2O3 exhibited efficient ozone removal.•Mesoporous poor crystallized α-Fe2O3 owned abundant oxygen vacancies and acid sites.•DFT calculation proved that reducing the crystallinity of α-Fe2O3 lowered the formation energy of oxygen vacancy.•The catalysts deactivation was attributed to the aggregation of O22− on oxygen vacancies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.scitotenv.2021.150161</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2022-01, Vol.804, p.150161-150161, Article 150161 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_2572530342 |
source | ScienceDirect Journals |
subjects | Mesoporous structure Oxygen vacancy Ozone decomposition Poorly crystalline structure α-Fe2O3 |
title | Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20poorly%20crystalline%20%CE%B1-Fe2O3%20with%20abundant%20oxygen%20vacancies%20and%20acid%20sites%20for%20ozone%20decomposition&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Liang,%20Xiaoshan&rft.date=2022-01-15&rft.volume=804&rft.spage=150161&rft.epage=150161&rft.pages=150161-150161&rft.artnum=150161&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2021.150161&rft_dat=%3Cproquest_cross%3E2572530342%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-3778dafd6aa352fb60523349b55cd207393637e3f006b133b4b089e3e5cee59f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572530342&rft_id=info:pmid/&rfr_iscdi=true |