Loading…

Photoelectrochemical Assay Based on SnO2/BiOBr p–n Heterojunction for Ultrasensitive DNA Detection

Herein, a photoelectrochemical (PEC) assay was designed for a highly sensitive DNA determination relying upon the SnO2/BiOBr p–n heterojunction as a photoactive material and SiO2 as a signal quencher. Compared with most traditional heterojunctions, the SnO2/BiOBr p–n heterostructure not only lessene...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2021-09, Vol.93 (38), p.12995-13000
Main Authors: Long, Dan, Tu, Yupeng, Chai, Yaqin, Yuan, Ruo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13000
container_issue 38
container_start_page 12995
container_title Analytical chemistry (Washington)
container_volume 93
creator Long, Dan
Tu, Yupeng
Chai, Yaqin
Yuan, Ruo
description Herein, a photoelectrochemical (PEC) assay was designed for a highly sensitive DNA determination relying upon the SnO2/BiOBr p–n heterojunction as a photoactive material and SiO2 as a signal quencher. Compared with most traditional heterojunctions, the SnO2/BiOBr p–n heterostructure not only lessened the recombination of the photogenerated electron–hole pairs but also promoted the light-harvesting in the ultraviolet–visible (UV–vis) region, leading to further enhanced photoelectric conversion efficiency and photocurrent, which demonstrated 12.1-fold and 6.4-fold increments versus those of pure SnO2 and BiOBr, respectively. Additionally, the limited quantity of target DNA (a fragment of p53 gene) could be transformed into abundant output DNA–SiO2 by employing the Nt·BstNBI enzyme-assisted signal amplification procedure, leading to a highly improved detection sensitivity of the biosensor. Then, output DNA–SiO2 hybridized with the capture DNA anchored on the modified electrode surface, remarkably diminishing the PEC signal and thus achieving sensitive DNA determination. The elaborated PEC biosensor demonstrated outstanding performance within the linear range between 0.5 fM and 5 nM and a low limit of detection down to 0.18 fM, paving a new way for fabricating heterojunction with exceptional photoactive performance and demonstrating the enormous potential for detecting multitudinous biomarkers in bioanalysis and clinical therapy.
doi_str_mv 10.1021/acs.analchem.1c02745
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2573440578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573440578</sourcerecordid><originalsourceid>FETCH-LOGICAL-a257t-5037046e95999a618a46beb7c0762c3b9d8e103876a321e1e17e49aea99243773</originalsourceid><addsrcrecordid>eNpd0MtKAzEUgOEgCtbqG7gIuHEz7UkyM0mWvagVihW06yFNT-mU6aROUsGd7-Ab-iSmFxEki0DOlwR-Qq4ZdBhw1jXWd0xtKrvEdYdZ4DLNTkiLZRySXCl-SloAIBIuAc7JhfcrAMaA5S0yf1664LBCGxq3u19aU9Ge9-aD9o3HOXU1faknvNsvJ_2Gbr4_v2o6woCNW21rG8o4X7iGTqvQRF_7MpTvSIdPPTqMag8uydnCVB6vjnubTO_vXgejZDx5eBz0xonhmQxJBkJCmqPOtNYmZ8qk-Qxn0oLMuRUzPVfIQCiZG8EZxiUx1QaN1jwVUoo2uT28u2nc2xZ9KNalt1hVpka39UX8RaQpZFJFevOPrty2iQ33SkqlWC6igoOKhf8Ag2KXvdgd_mYvjtnFD5qReIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577788163</pqid></control><display><type>article</type><title>Photoelectrochemical Assay Based on SnO2/BiOBr p–n Heterojunction for Ultrasensitive DNA Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Long, Dan ; Tu, Yupeng ; Chai, Yaqin ; Yuan, Ruo</creator><creatorcontrib>Long, Dan ; Tu, Yupeng ; Chai, Yaqin ; Yuan, Ruo</creatorcontrib><description>Herein, a photoelectrochemical (PEC) assay was designed for a highly sensitive DNA determination relying upon the SnO2/BiOBr p–n heterojunction as a photoactive material and SiO2 as a signal quencher. Compared with most traditional heterojunctions, the SnO2/BiOBr p–n heterostructure not only lessened the recombination of the photogenerated electron–hole pairs but also promoted the light-harvesting in the ultraviolet–visible (UV–vis) region, leading to further enhanced photoelectric conversion efficiency and photocurrent, which demonstrated 12.1-fold and 6.4-fold increments versus those of pure SnO2 and BiOBr, respectively. Additionally, the limited quantity of target DNA (a fragment of p53 gene) could be transformed into abundant output DNA–SiO2 by employing the Nt·BstNBI enzyme-assisted signal amplification procedure, leading to a highly improved detection sensitivity of the biosensor. Then, output DNA–SiO2 hybridized with the capture DNA anchored on the modified electrode surface, remarkably diminishing the PEC signal and thus achieving sensitive DNA determination. The elaborated PEC biosensor demonstrated outstanding performance within the linear range between 0.5 fM and 5 nM and a low limit of detection down to 0.18 fM, paving a new way for fabricating heterojunction with exceptional photoactive performance and demonstrating the enormous potential for detecting multitudinous biomarkers in bioanalysis and clinical therapy.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c02745</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Biomarkers ; Biosensors ; Chemistry ; Deoxyribonucleic acid ; DNA ; Heterojunctions ; Heterostructures ; P-n junctions ; p53 Protein ; Photoelectric effect ; Photoelectricity ; Recombination ; Silicon dioxide ; Tin dioxide ; Ultraviolet radiation</subject><ispartof>Analytical chemistry (Washington), 2021-09, Vol.93 (38), p.12995-13000</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3664-6236 ; 0000-0003-4392-9592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Long, Dan</creatorcontrib><creatorcontrib>Tu, Yupeng</creatorcontrib><creatorcontrib>Chai, Yaqin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><title>Photoelectrochemical Assay Based on SnO2/BiOBr p–n Heterojunction for Ultrasensitive DNA Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Herein, a photoelectrochemical (PEC) assay was designed for a highly sensitive DNA determination relying upon the SnO2/BiOBr p–n heterojunction as a photoactive material and SiO2 as a signal quencher. Compared with most traditional heterojunctions, the SnO2/BiOBr p–n heterostructure not only lessened the recombination of the photogenerated electron–hole pairs but also promoted the light-harvesting in the ultraviolet–visible (UV–vis) region, leading to further enhanced photoelectric conversion efficiency and photocurrent, which demonstrated 12.1-fold and 6.4-fold increments versus those of pure SnO2 and BiOBr, respectively. Additionally, the limited quantity of target DNA (a fragment of p53 gene) could be transformed into abundant output DNA–SiO2 by employing the Nt·BstNBI enzyme-assisted signal amplification procedure, leading to a highly improved detection sensitivity of the biosensor. Then, output DNA–SiO2 hybridized with the capture DNA anchored on the modified electrode surface, remarkably diminishing the PEC signal and thus achieving sensitive DNA determination. The elaborated PEC biosensor demonstrated outstanding performance within the linear range between 0.5 fM and 5 nM and a low limit of detection down to 0.18 fM, paving a new way for fabricating heterojunction with exceptional photoactive performance and demonstrating the enormous potential for detecting multitudinous biomarkers in bioanalysis and clinical therapy.</description><subject>Biomarkers</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>P-n junctions</subject><subject>p53 Protein</subject><subject>Photoelectric effect</subject><subject>Photoelectricity</subject><subject>Recombination</subject><subject>Silicon dioxide</subject><subject>Tin dioxide</subject><subject>Ultraviolet radiation</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0MtKAzEUgOEgCtbqG7gIuHEz7UkyM0mWvagVihW06yFNT-mU6aROUsGd7-Ab-iSmFxEki0DOlwR-Qq4ZdBhw1jXWd0xtKrvEdYdZ4DLNTkiLZRySXCl-SloAIBIuAc7JhfcrAMaA5S0yf1664LBCGxq3u19aU9Ge9-aD9o3HOXU1faknvNsvJ_2Gbr4_v2o6woCNW21rG8o4X7iGTqvQRF_7MpTvSIdPPTqMag8uydnCVB6vjnubTO_vXgejZDx5eBz0xonhmQxJBkJCmqPOtNYmZ8qk-Qxn0oLMuRUzPVfIQCiZG8EZxiUx1QaN1jwVUoo2uT28u2nc2xZ9KNalt1hVpka39UX8RaQpZFJFevOPrty2iQ33SkqlWC6igoOKhf8Ag2KXvdgd_mYvjtnFD5qReIE</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Long, Dan</creator><creator>Tu, Yupeng</creator><creator>Chai, Yaqin</creator><creator>Yuan, Ruo</creator><general>American Chemical Society</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3664-6236</orcidid><orcidid>https://orcid.org/0000-0003-4392-9592</orcidid></search><sort><creationdate>20210928</creationdate><title>Photoelectrochemical Assay Based on SnO2/BiOBr p–n Heterojunction for Ultrasensitive DNA Detection</title><author>Long, Dan ; Tu, Yupeng ; Chai, Yaqin ; Yuan, Ruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a257t-5037046e95999a618a46beb7c0762c3b9d8e103876a321e1e17e49aea99243773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomarkers</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>P-n junctions</topic><topic>p53 Protein</topic><topic>Photoelectric effect</topic><topic>Photoelectricity</topic><topic>Recombination</topic><topic>Silicon dioxide</topic><topic>Tin dioxide</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Dan</creatorcontrib><creatorcontrib>Tu, Yupeng</creatorcontrib><creatorcontrib>Chai, Yaqin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Dan</au><au>Tu, Yupeng</au><au>Chai, Yaqin</au><au>Yuan, Ruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical Assay Based on SnO2/BiOBr p–n Heterojunction for Ultrasensitive DNA Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-09-28</date><risdate>2021</risdate><volume>93</volume><issue>38</issue><spage>12995</spage><epage>13000</epage><pages>12995-13000</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Herein, a photoelectrochemical (PEC) assay was designed for a highly sensitive DNA determination relying upon the SnO2/BiOBr p–n heterojunction as a photoactive material and SiO2 as a signal quencher. Compared with most traditional heterojunctions, the SnO2/BiOBr p–n heterostructure not only lessened the recombination of the photogenerated electron–hole pairs but also promoted the light-harvesting in the ultraviolet–visible (UV–vis) region, leading to further enhanced photoelectric conversion efficiency and photocurrent, which demonstrated 12.1-fold and 6.4-fold increments versus those of pure SnO2 and BiOBr, respectively. Additionally, the limited quantity of target DNA (a fragment of p53 gene) could be transformed into abundant output DNA–SiO2 by employing the Nt·BstNBI enzyme-assisted signal amplification procedure, leading to a highly improved detection sensitivity of the biosensor. Then, output DNA–SiO2 hybridized with the capture DNA anchored on the modified electrode surface, remarkably diminishing the PEC signal and thus achieving sensitive DNA determination. The elaborated PEC biosensor demonstrated outstanding performance within the linear range between 0.5 fM and 5 nM and a low limit of detection down to 0.18 fM, paving a new way for fabricating heterojunction with exceptional photoactive performance and demonstrating the enormous potential for detecting multitudinous biomarkers in bioanalysis and clinical therapy.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.1c02745</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3664-6236</orcidid><orcidid>https://orcid.org/0000-0003-4392-9592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-09, Vol.93 (38), p.12995-13000
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2573440578
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biomarkers
Biosensors
Chemistry
Deoxyribonucleic acid
DNA
Heterojunctions
Heterostructures
P-n junctions
p53 Protein
Photoelectric effect
Photoelectricity
Recombination
Silicon dioxide
Tin dioxide
Ultraviolet radiation
title Photoelectrochemical Assay Based on SnO2/BiOBr p–n Heterojunction for Ultrasensitive DNA Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20Assay%20Based%20on%20SnO2/BiOBr%20p%E2%80%93n%20Heterojunction%20for%20Ultrasensitive%20DNA%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Long,%20Dan&rft.date=2021-09-28&rft.volume=93&rft.issue=38&rft.spage=12995&rft.epage=13000&rft.pages=12995-13000&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c02745&rft_dat=%3Cproquest_acs_j%3E2573440578%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a257t-5037046e95999a618a46beb7c0762c3b9d8e103876a321e1e17e49aea99243773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577788163&rft_id=info:pmid/&rfr_iscdi=true