Loading…

High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes

Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐sta...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2021-11, Vol.33 (45), p.e2105329-n/a
Main Authors: He, Fei, Tang, Wenjing, Zhang, Xinyue, Deng, Lijun, Luo, Jiayan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863
cites cdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863
container_end_page n/a
container_issue 45
container_start_page e2105329
container_title Advanced materials (Weinheim)
container_volume 33
creator He, Fei
Tang, Wenjing
Zhang, Xinyue
Deng, Lijun
Luo, Jiayan
description Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated. Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.
doi_str_mv 10.1002/adma.202105329
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574397972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574397972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC9b1wE3bqYmmUnSLGutF6gotPshM3OmjWQ6Nckgs_MRfBlfwEfxSYxUFNy4OvzwfYdzfoROKBlSQti5rho9ZIRRwlOmdtCAckaTjCi-iwZEpTxRIhvtowPvHwkhShAxQObGLFd4uga37PElrL0JPZ631lR4HnQAPDNhZboG30HQFl_oEMAZ8FHRhYUKFxHvio-XV47f35pv9aG1fQMOTy2UwcUQwB-hvVpbD8ff8xAtrqaLyU0yu7--nYxnSckEV0khSlGUgoBOK1ZrSiTnlJWyqkZcpoLFIAspac2EzLL4rh6JmmngnJNiJNJDdLZdu3HtUwc-5I3xJVir19B2PmdcZqmSSrKInv5BH9vOreNxkVKcCJlmKlLDLVW61nsHdb5xptGuzynJv4rPv4rPf4qPgtoKz8ZC_w-djy_vxr_uJ5Dghwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595067349</pqid></control><display><type>article</type><title>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>He, Fei ; Tang, Wenjing ; Zhang, Xinyue ; Deng, Lijun ; Luo, Jiayan</creator><creatorcontrib>He, Fei ; Tang, Wenjing ; Zhang, Xinyue ; Deng, Lijun ; Luo, Jiayan</creatorcontrib><description>Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated. Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105329</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D ceramic fillers ; Anodes ; Batteries ; Cathodes ; Ceramics ; Conducting polymers ; Electric potential ; Electrolytes ; Electrolytic cells ; Energy ; Energy storage ; Fire resistance ; Flux density ; high energy density ; Lithium batteries ; Materials science ; Molten salt electrolytes ; Nonaqueous electrolytes ; Polymers ; Safety ; Scaffolds ; Solid electrolytes ; solid‐state Li metal batteries ; Thickness ; ultrathin polymer electrolytes ; Voltage ; Weight reduction</subject><ispartof>Advanced materials (Weinheim), 2021-11, Vol.33 (45), p.e2105329-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</citedby><cites>FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</cites><orcidid>0000-0002-4619-6040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Tang, Wenjing</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Deng, Lijun</creatorcontrib><creatorcontrib>Luo, Jiayan</creatorcontrib><title>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</title><title>Advanced materials (Weinheim)</title><description>Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated. Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.</description><subject>3D ceramic fillers</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Ceramics</subject><subject>Conducting polymers</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Fire resistance</subject><subject>Flux density</subject><subject>high energy density</subject><subject>Lithium batteries</subject><subject>Materials science</subject><subject>Molten salt electrolytes</subject><subject>Nonaqueous electrolytes</subject><subject>Polymers</subject><subject>Safety</subject><subject>Scaffolds</subject><subject>Solid electrolytes</subject><subject>solid‐state Li metal batteries</subject><subject>Thickness</subject><subject>ultrathin polymer electrolytes</subject><subject>Voltage</subject><subject>Weight reduction</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC9b1wE3bqYmmUnSLGutF6gotPshM3OmjWQ6Nckgs_MRfBlfwEfxSYxUFNy4OvzwfYdzfoROKBlSQti5rho9ZIRRwlOmdtCAckaTjCi-iwZEpTxRIhvtowPvHwkhShAxQObGLFd4uga37PElrL0JPZ631lR4HnQAPDNhZboG30HQFl_oEMAZ8FHRhYUKFxHvio-XV47f35pv9aG1fQMOTy2UwcUQwB-hvVpbD8ff8xAtrqaLyU0yu7--nYxnSckEV0khSlGUgoBOK1ZrSiTnlJWyqkZcpoLFIAspac2EzLL4rh6JmmngnJNiJNJDdLZdu3HtUwc-5I3xJVir19B2PmdcZqmSSrKInv5BH9vOreNxkVKcCJlmKlLDLVW61nsHdb5xptGuzynJv4rPv4rPf4qPgtoKz8ZC_w-djy_vxr_uJ5Dghwc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>He, Fei</creator><creator>Tang, Wenjing</creator><creator>Zhang, Xinyue</creator><creator>Deng, Lijun</creator><creator>Luo, Jiayan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4619-6040</orcidid></search><sort><creationdate>20211101</creationdate><title>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</title><author>He, Fei ; Tang, Wenjing ; Zhang, Xinyue ; Deng, Lijun ; Luo, Jiayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D ceramic fillers</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Ceramics</topic><topic>Conducting polymers</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Fire resistance</topic><topic>Flux density</topic><topic>high energy density</topic><topic>Lithium batteries</topic><topic>Materials science</topic><topic>Molten salt electrolytes</topic><topic>Nonaqueous electrolytes</topic><topic>Polymers</topic><topic>Safety</topic><topic>Scaffolds</topic><topic>Solid electrolytes</topic><topic>solid‐state Li metal batteries</topic><topic>Thickness</topic><topic>ultrathin polymer electrolytes</topic><topic>Voltage</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Tang, Wenjing</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Deng, Lijun</creatorcontrib><creatorcontrib>Luo, Jiayan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Tang, Wenjing</au><au>Zhang, Xinyue</au><au>Deng, Lijun</au><au>Luo, Jiayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>45</issue><spage>e2105329</spage><epage>n/a</epage><pages>e2105329-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated. Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202105329</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4619-6040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-11, Vol.33 (45), p.e2105329-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2574397972
source Wiley-Blackwell Read & Publish Collection
subjects 3D ceramic fillers
Anodes
Batteries
Cathodes
Ceramics
Conducting polymers
Electric potential
Electrolytes
Electrolytic cells
Energy
Energy storage
Fire resistance
Flux density
high energy density
Lithium batteries
Materials science
Molten salt electrolytes
Nonaqueous electrolytes
Polymers
Safety
Scaffolds
Solid electrolytes
solid‐state Li metal batteries
Thickness
ultrathin polymer electrolytes
Voltage
Weight reduction
title High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density%20Solid%20State%20Lithium%20Metal%20Batteries%20Enabled%20by%20Sub%E2%80%905%20%C2%B5m%20Solid%20Polymer%20Electrolytes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=He,%20Fei&rft.date=2021-11-01&rft.volume=33&rft.issue=45&rft.spage=e2105329&rft.epage=n/a&rft.pages=e2105329-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105329&rft_dat=%3Cproquest_cross%3E2574397972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595067349&rft_id=info:pmid/&rfr_iscdi=true