Loading…
High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes
Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐sta...
Saved in:
Published in: | Advanced materials (Weinheim) 2021-11, Vol.33 (45), p.e2105329-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863 |
---|---|
cites | cdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863 |
container_end_page | n/a |
container_issue | 45 |
container_start_page | e2105329 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | He, Fei Tang, Wenjing Zhang, Xinyue Deng, Lijun Luo, Jiayan |
description | Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated.
Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated. |
doi_str_mv | 10.1002/adma.202105329 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574397972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574397972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC9b1wE3bqYmmUnSLGutF6gotPshM3OmjWQ6Nckgs_MRfBlfwEfxSYxUFNy4OvzwfYdzfoROKBlSQti5rho9ZIRRwlOmdtCAckaTjCi-iwZEpTxRIhvtowPvHwkhShAxQObGLFd4uga37PElrL0JPZ631lR4HnQAPDNhZboG30HQFl_oEMAZ8FHRhYUKFxHvio-XV47f35pv9aG1fQMOTy2UwcUQwB-hvVpbD8ff8xAtrqaLyU0yu7--nYxnSckEV0khSlGUgoBOK1ZrSiTnlJWyqkZcpoLFIAspac2EzLL4rh6JmmngnJNiJNJDdLZdu3HtUwc-5I3xJVir19B2PmdcZqmSSrKInv5BH9vOreNxkVKcCJlmKlLDLVW61nsHdb5xptGuzynJv4rPv4rPf4qPgtoKz8ZC_w-djy_vxr_uJ5Dghwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595067349</pqid></control><display><type>article</type><title>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>He, Fei ; Tang, Wenjing ; Zhang, Xinyue ; Deng, Lijun ; Luo, Jiayan</creator><creatorcontrib>He, Fei ; Tang, Wenjing ; Zhang, Xinyue ; Deng, Lijun ; Luo, Jiayan</creatorcontrib><description>Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated.
Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105329</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D ceramic fillers ; Anodes ; Batteries ; Cathodes ; Ceramics ; Conducting polymers ; Electric potential ; Electrolytes ; Electrolytic cells ; Energy ; Energy storage ; Fire resistance ; Flux density ; high energy density ; Lithium batteries ; Materials science ; Molten salt electrolytes ; Nonaqueous electrolytes ; Polymers ; Safety ; Scaffolds ; Solid electrolytes ; solid‐state Li metal batteries ; Thickness ; ultrathin polymer electrolytes ; Voltage ; Weight reduction</subject><ispartof>Advanced materials (Weinheim), 2021-11, Vol.33 (45), p.e2105329-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</citedby><cites>FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</cites><orcidid>0000-0002-4619-6040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Tang, Wenjing</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Deng, Lijun</creatorcontrib><creatorcontrib>Luo, Jiayan</creatorcontrib><title>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</title><title>Advanced materials (Weinheim)</title><description>Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated.
Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.</description><subject>3D ceramic fillers</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Ceramics</subject><subject>Conducting polymers</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Fire resistance</subject><subject>Flux density</subject><subject>high energy density</subject><subject>Lithium batteries</subject><subject>Materials science</subject><subject>Molten salt electrolytes</subject><subject>Nonaqueous electrolytes</subject><subject>Polymers</subject><subject>Safety</subject><subject>Scaffolds</subject><subject>Solid electrolytes</subject><subject>solid‐state Li metal batteries</subject><subject>Thickness</subject><subject>ultrathin polymer electrolytes</subject><subject>Voltage</subject><subject>Weight reduction</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC9b1wE3bqYmmUnSLGutF6gotPshM3OmjWQ6Nckgs_MRfBlfwEfxSYxUFNy4OvzwfYdzfoROKBlSQti5rho9ZIRRwlOmdtCAckaTjCi-iwZEpTxRIhvtowPvHwkhShAxQObGLFd4uga37PElrL0JPZ631lR4HnQAPDNhZboG30HQFl_oEMAZ8FHRhYUKFxHvio-XV47f35pv9aG1fQMOTy2UwcUQwB-hvVpbD8ff8xAtrqaLyU0yu7--nYxnSckEV0khSlGUgoBOK1ZrSiTnlJWyqkZcpoLFIAspac2EzLL4rh6JmmngnJNiJNJDdLZdu3HtUwc-5I3xJVir19B2PmdcZqmSSrKInv5BH9vOreNxkVKcCJlmKlLDLVW61nsHdb5xptGuzynJv4rPv4rPf4qPgtoKz8ZC_w-djy_vxr_uJ5Dghwc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>He, Fei</creator><creator>Tang, Wenjing</creator><creator>Zhang, Xinyue</creator><creator>Deng, Lijun</creator><creator>Luo, Jiayan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4619-6040</orcidid></search><sort><creationdate>20211101</creationdate><title>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</title><author>He, Fei ; Tang, Wenjing ; Zhang, Xinyue ; Deng, Lijun ; Luo, Jiayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D ceramic fillers</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Ceramics</topic><topic>Conducting polymers</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Fire resistance</topic><topic>Flux density</topic><topic>high energy density</topic><topic>Lithium batteries</topic><topic>Materials science</topic><topic>Molten salt electrolytes</topic><topic>Nonaqueous electrolytes</topic><topic>Polymers</topic><topic>Safety</topic><topic>Scaffolds</topic><topic>Solid electrolytes</topic><topic>solid‐state Li metal batteries</topic><topic>Thickness</topic><topic>ultrathin polymer electrolytes</topic><topic>Voltage</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Tang, Wenjing</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Deng, Lijun</creatorcontrib><creatorcontrib>Luo, Jiayan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Tang, Wenjing</au><au>Zhang, Xinyue</au><au>Deng, Lijun</au><au>Luo, Jiayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>45</issue><spage>e2105329</spage><epage>n/a</epage><pages>e2105329-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Solid‐state batteries (SSBs) are considered as the most promising next‐generation high‐energy‐density energy storage devices due to their ability in addressing the safety concerns from organic electrolytes and enabling energy dense lithium anodes. To ensure the high energy density of SSBs, solid‐state electrolytes (SSEs) are required to be thin and light‐weight, and simultaneously offer a wide electrochemical window to pair with high‐voltage cathodes. However, the decrease of SSE thickness and delicate structure may increase the cell safety risks, which is detrimental for the practical application of SSBs. Herein, to demonstrate a high‐energy‐density SSB with sufficient safety insurance, an ultrathin (4.2 µm) bilayer SSE with porous ceramic scaffold and double‐layer Li+‐conducting polymer, is proposed. The fire‐resistant and stiff ceramic scaffold improves the safety capability and mechanical strength of the composite SSE, and the bilayer polymer structure enhances the compatibility of Li metal anode and high‐voltage cathodes. The 3D ceramic facilitates Li‐ion conduction and regulates Li deposition. Thus, high energy density of 506 Wh kg−1 and 1514 Wh L−1 is achieved based on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with a low N/P ratio and long lifespan over 3000 h. High‐energy‐density anode‐free cells are further demonstrated.
Thin, solid‐state electrolytes (SSEs) are crucial to improve cell energy density. However, limited oxide stability and weak strength hinder the application of ultrathin SSEs. In this work, an ultrathin bilayer SSE with porous ceramic scaffold inside is proposed to simultaneously enlarge the electrochemical window and improve the mechanical strength. High‐energy‐density lithium‐metal batteries are also demonstrated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202105329</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4619-6040</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-11, Vol.33 (45), p.e2105329-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2574397972 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D ceramic fillers Anodes Batteries Cathodes Ceramics Conducting polymers Electric potential Electrolytes Electrolytic cells Energy Energy storage Fire resistance Flux density high energy density Lithium batteries Materials science Molten salt electrolytes Nonaqueous electrolytes Polymers Safety Scaffolds Solid electrolytes solid‐state Li metal batteries Thickness ultrathin polymer electrolytes Voltage Weight reduction |
title | High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density%20Solid%20State%20Lithium%20Metal%20Batteries%20Enabled%20by%20Sub%E2%80%905%20%C2%B5m%20Solid%20Polymer%20Electrolytes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=He,%20Fei&rft.date=2021-11-01&rft.volume=33&rft.issue=45&rft.spage=e2105329&rft.epage=n/a&rft.pages=e2105329-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105329&rft_dat=%3Cproquest_cross%3E2574397972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2659-b6c6bc60ea3d2fa1075512c7dd8573625127b771f26744202a86f2ae5550b863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595067349&rft_id=info:pmid/&rfr_iscdi=true |