Loading…

Protein Production and Purification of a Codon-Optimized Human NGN3 Transcription Factor from E. coli

Neurogenin 3 (NGN3) transcription factor is vital for the development of endocrine cells of the intestine and pancreas. NGN3 is also critical for the neural precursor cell determination in the neuroectoderm. Additionally, it is one of the vital transcription factors for deriving human β-cells from s...

Full description

Saved in:
Bibliographic Details
Published in:The Protein Journal 2021-12, Vol.40 (6), p.891-906
Main Authors: Narayan, Gloria, Agrawal, Akriti, Joshi, Neha, Gogoi, Ranadeep, Nagotu, Shirisha, Thummer, Rajkumar P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurogenin 3 (NGN3) transcription factor is vital for the development of endocrine cells of the intestine and pancreas. NGN3 is also critical for the neural precursor cell determination in the neuroectoderm. Additionally, it is one of the vital transcription factors for deriving human β-cells from specialized somatic cells. In the current study, the production and purification of the human NGN3 protein from Escherichia coli ( E. coli ) is reported. First, the 642 bp protein-coding nucleotide sequence of the NGN3 gene was codon-optimized to enable enhanced protein expression in E. coli strain BL21(DE3). The codon-optimized NGN3 sequence was fused in-frame to three different fusion tags to enable cell penetration, nuclear translocation, and affinity purification. The gene insert with the fusion tags was subsequently cloned into an expression vector (pET28a( +)) for heterologous expression in BL21(DE3) cells. A suitable genetic construct and the ideal expression conditions were subsequently identified that produced a soluble form of the recombinant NGN3 fusion protein. This NGN3 fusion protein was purified to homogeneity (purity > 90%) under native conditions, and its secondary structure was retained post-purification. This purified protein, when applied to human cells, did not induce cytotoxicity. Further, the cellular uptake and nuclear translocation of the NGN3 fusion protein was demonstrated followed by its biological activity in PANC-1 cells. Prospectively, this recombinant protein can be utilized for various biological applications to investigate its functionality in cell reprogramming, biological processes, and diseases.
ISSN:1572-3887
1573-4943
1875-8355
DOI:10.1007/s10930-021-10020-x