Loading…
Injectable Biocatalytic Nanocomposite Hydrogel Factories for Focal Enzyme-Prodrug Cancer Therapy
Systemic enzyme-prodrug therapy (EPT) using nanofactories, nanoparticles encapsulating prodrug-activating enzymes, is a promising concept for anticancer therapy. However, systemic delivery systems can be problematic. As nanofactories are typically carried by the blood circulation to tissues througho...
Saved in:
Published in: | Biomacromolecules 2021-10, Vol.22 (10), p.4217-4227 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systemic enzyme-prodrug therapy (EPT) using nanofactories, nanoparticles encapsulating prodrug-activating enzymes, is a promising concept for anticancer therapy. However, systemic delivery systems can be problematic. As nanofactories are typically carried by the blood circulation to tissues throughout the body, conversion of anticancer drugs in normal tissues can cause severe side effects. To overcome this problem, we developed a novel focal EPT approach utilizing nanocomposite hydrogels composed of a poly(dl-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(dl-lactide-co-glycolide) (PLGA–PEG–PLGA) copolymer, LAPONITE, and β-galactosidase (β-gal). The nanocomposite gels can be easily injected locally, and the inherent enzyme activity of β-gal can be preserved long-term. Prodrug 5-FU−β-gal readily permeated into the interior space of gels and was converted into the active anticancer drug 5-FU. Importantly, a single local injection of nanocomposite gels and prodrug 5-FU−β-gal provided long-lasting antitumor activity in vivo without observable side effects, demonstrating the potential utility of injectable biocatalytic hydrogel factories for novel focal EPT systems. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.1c00778 |