Loading…
Exciting the Goldstone Modes of a Supersolid Spin-Orbit-Coupled Bose Gas
Supersolidity is deeply connected with the emergence of Goldstone modes, reflecting the spontaneous breaking of both phase and translational symmetry. Here, we propose accessible signatures of these modes in harmonically trapped spin-orbit-coupled Bose-Einstein condensates, where supersolidity appea...
Saved in:
Published in: | Physical review letters 2021-09, Vol.127 (11), p.1-115301, Article 115301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supersolidity is deeply connected with the emergence of Goldstone modes, reflecting the spontaneous breaking of both phase and translational symmetry. Here, we propose accessible signatures of these modes in harmonically trapped spin-orbit-coupled Bose-Einstein condensates, where supersolidity appears in the form of stripes. By suddenly changing the trapping frequency, an axial breathing oscillation is generated, whose behavior changes drastically at the critical Raman coupling. Above the transition, a single mode of hybridized density and spin nature is excited, while below it, we predict a beating effect signaling the excitation of a Goldstone spin-dipole mode. We further provide evidence for the Goldstone mode associated with the translational motion of stripes. Our results open up new perspectives for probing supersolid properties in experimentally relevant configurations with both symmetric as well as highly asymmetric intraspecies interactions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.115301 |