Loading…

Natural organic matter composition and nanomaterial surface coating determine the nature of platinum nanomaterial-natural organic matter corona

Natural organic matter corona (NOM corona) is an interfacial area between nanomaterials (NMs) and the surrounding environment, which gives rise to NMs' unique surface identity. While the importance of the formation of natural organic matter (NOM) corona on engineered nanomaterials (NMs) to NM b...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2022-02, Vol.806, p.150477-150477, Article 150477
Main Authors: Baalousha, Mohammed, Sikder, Mithun, Poulin, Brett A., Tfaily, Malak M., Hess, Nancy J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Natural organic matter corona (NOM corona) is an interfacial area between nanomaterials (NMs) and the surrounding environment, which gives rise to NMs' unique surface identity. While the importance of the formation of natural organic matter (NOM) corona on engineered nanomaterials (NMs) to NM behavior, fate, and toxicity has been well-established, the understanding of how NOM molecular properties affect NOM corona composition remains elusive due to the complexity and heterogeneity of NOM. This is further complicated by the variation of NOMs from different origins. Here we use eight NOM isolates of different molecular composition and ultrahigh resolution Fourier-transform ion cyclotron resonance-mass spectrometry (ESI-FT-ICR-MS) to determine the molecular composition of platinum NM-NOM corona as a function of NOM composition and NM surface coating. We observed that the composition of PtNM-NOM corona varied with the composition of the original NOM. The percentage of NOM formulas that formed PVP-PtNM-NOM corona was higher than those formed citrate-PtNM-NOM corona, due to increased sorption of NOM formulas, in particular condensed hydrocarbons, to the PVP coating. The relative abundance of heteroatom formulas (CHON, CHOS, and CHOP) was higher in the PVP-PtNM-NOM corona than in citrate-PtNM-corona which was in turn higher than those in the original NOM isolate, indicating preferential partitioning of heteroatom-rich molecules to NM surfaces. The relative abundance of CHO, CHON, CHOS, CHOP and condensed hydrocarbons in PtNM-NOM corona increased with their increase in NOM isolates. Furthermore, PtNM-NOM corona is rich with compounds with high molecular weight. This study demonstrates that the composition and properties of PtNM-NOM corona depend on NOM molecular properties and PtNM surface coating. The results here provide evidence of molecular interactions between NOM and NMs, which are critical to understanding NM colloidal properties (e.g., surface charge and stability), interaction forces (e.g., van der Waals and hydrophobic), environmental behaviors (e.g., aggregation, dissolution, sulfidation, etc.), and biological effects (e.g., uptake, bioaccumulation, and toxicity). NM-NOM corona as a function of NM surface coating and NOM composition. [Display omitted] •Natural organic matter corona on PtNM surfaces (PtNM-NOM corona) was determined.•PtNM-NOM corona composition varies with NOM composition and PtNM surface coating.•The % of NOM formulas sorbed on PVP-PtNM
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.150477