Loading…

Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries

The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low o...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-10, Vol.13 (40), p.47749-47755
Main Authors: Ahn, Eun Gong, Yang, Jin-Hoon, Lee, Joo-Hyoung
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 47755
container_issue 40
container_start_page 47749
container_title ACS applied materials & interfaces
container_volume 13
creator Ahn, Eun Gong
Yang, Jin-Hoon
Lee, Joo-Hyoung
description The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.
doi_str_mv 10.1021/acsami.1c16896
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2577731301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577731301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-b887db39edbf4311bb0204e96ecfa315af283a94b991d0af813a67ce808579733</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFavnvdYhdSd3SS7e6yl2kJLBRWPYZJM2pQkq9nE329Ki6eZYR4fH4-xexBTEBKeMPNYl1PIIDY2vmAjsGEYGBnJy_89DK_ZjfcHIWIlRTRiX5udei_VZOO28YPk6DnyZbnbB2_UFq6tscmIz7Hbu5z4LOvKX-Ib7KgtseIDMBy7hnzZ18HKNfwZu-OP_C27KrDydHeeY_b5sviYL4P19nU1n60DhEh1QWqMzlNlKU-LUAGkqZAiJBtTVqCCCAtpFNowtRZygYUBhbHOyAgTaauVGrPJKfe7dT89-S6pS59RVWFDrveJjLTWCpSAAX08oYOo5OD6thmKJSCSo73kZC8521N_GhliBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577731301</pqid></control><display><type>article</type><title>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ahn, Eun Gong ; Yang, Jin-Hoon ; Lee, Joo-Hyoung</creator><creatorcontrib>Ahn, Eun Gong ; Yang, Jin-Hoon ; Lee, Joo-Hyoung</creatorcontrib><description>The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c16896</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-10, Vol.13 (40), p.47749-47755</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7637-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahn, Eun Gong</creatorcontrib><creatorcontrib>Yang, Jin-Hoon</creatorcontrib><creatorcontrib>Lee, Joo-Hyoung</creatorcontrib><title>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQRhdRsFavnvdYhdSd3SS7e6yl2kJLBRWPYZJM2pQkq9nE329Ki6eZYR4fH4-xexBTEBKeMPNYl1PIIDY2vmAjsGEYGBnJy_89DK_ZjfcHIWIlRTRiX5udei_VZOO28YPk6DnyZbnbB2_UFq6tscmIz7Hbu5z4LOvKX-Ib7KgtseIDMBy7hnzZ18HKNfwZu-OP_C27KrDydHeeY_b5sviYL4P19nU1n60DhEh1QWqMzlNlKU-LUAGkqZAiJBtTVqCCCAtpFNowtRZygYUBhbHOyAgTaauVGrPJKfe7dT89-S6pS59RVWFDrveJjLTWCpSAAX08oYOo5OD6thmKJSCSo73kZC8521N_GhliBA</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Ahn, Eun Gong</creator><creator>Yang, Jin-Hoon</creator><creator>Lee, Joo-Hyoung</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7637-9825</orcidid></search><sort><creationdate>20211013</creationdate><title>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</title><author>Ahn, Eun Gong ; Yang, Jin-Hoon ; Lee, Joo-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-b887db39edbf4311bb0204e96ecfa315af283a94b991d0af813a67ce808579733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Eun Gong</creatorcontrib><creatorcontrib>Yang, Jin-Hoon</creatorcontrib><creatorcontrib>Lee, Joo-Hyoung</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Eun Gong</au><au>Yang, Jin-Hoon</au><au>Lee, Joo-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-13</date><risdate>2021</risdate><volume>13</volume><issue>40</issue><spage>47749</spage><epage>47755</epage><pages>47749-47755</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c16896</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7637-9825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-10, Vol.13 (40), p.47749-47755
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2577731301
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg3Si3(MoO6)2%20as%20a%20High-Performance%20Cathode%20Active%20Material%20for%20Magnesium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ahn,%20Eun%20Gong&rft.date=2021-10-13&rft.volume=13&rft.issue=40&rft.spage=47749&rft.epage=47755&rft.pages=47749-47755&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c16896&rft_dat=%3Cproquest_acs_j%3E2577731301%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-b887db39edbf4311bb0204e96ecfa315af283a94b991d0af813a67ce808579733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577731301&rft_id=info:pmid/&rfr_iscdi=true