Loading…
Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries
The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low o...
Saved in:
Published in: | ACS applied materials & interfaces 2021-10, Vol.13 (40), p.47749-47755 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 47755 |
container_issue | 40 |
container_start_page | 47749 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Ahn, Eun Gong Yang, Jin-Hoon Lee, Joo-Hyoung |
description | The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications. |
doi_str_mv | 10.1021/acsami.1c16896 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2577731301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577731301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-b887db39edbf4311bb0204e96ecfa315af283a94b991d0af813a67ce808579733</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFavnvdYhdSd3SS7e6yl2kJLBRWPYZJM2pQkq9nE329Ki6eZYR4fH4-xexBTEBKeMPNYl1PIIDY2vmAjsGEYGBnJy_89DK_ZjfcHIWIlRTRiX5udei_VZOO28YPk6DnyZbnbB2_UFq6tscmIz7Hbu5z4LOvKX-Ib7KgtseIDMBy7hnzZ18HKNfwZu-OP_C27KrDydHeeY_b5sviYL4P19nU1n60DhEh1QWqMzlNlKU-LUAGkqZAiJBtTVqCCCAtpFNowtRZygYUBhbHOyAgTaauVGrPJKfe7dT89-S6pS59RVWFDrveJjLTWCpSAAX08oYOo5OD6thmKJSCSo73kZC8521N_GhliBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577731301</pqid></control><display><type>article</type><title>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ahn, Eun Gong ; Yang, Jin-Hoon ; Lee, Joo-Hyoung</creator><creatorcontrib>Ahn, Eun Gong ; Yang, Jin-Hoon ; Lee, Joo-Hyoung</creatorcontrib><description>The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c16896</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2021-10, Vol.13 (40), p.47749-47755</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7637-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahn, Eun Gong</creatorcontrib><creatorcontrib>Yang, Jin-Hoon</creatorcontrib><creatorcontrib>Lee, Joo-Hyoung</creatorcontrib><title>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQRhdRsFavnvdYhdSd3SS7e6yl2kJLBRWPYZJM2pQkq9nE329Ki6eZYR4fH4-xexBTEBKeMPNYl1PIIDY2vmAjsGEYGBnJy_89DK_ZjfcHIWIlRTRiX5udei_VZOO28YPk6DnyZbnbB2_UFq6tscmIz7Hbu5z4LOvKX-Ib7KgtseIDMBy7hnzZ18HKNfwZu-OP_C27KrDydHeeY_b5sviYL4P19nU1n60DhEh1QWqMzlNlKU-LUAGkqZAiJBtTVqCCCAtpFNowtRZygYUBhbHOyAgTaauVGrPJKfe7dT89-S6pS59RVWFDrveJjLTWCpSAAX08oYOo5OD6thmKJSCSo73kZC8521N_GhliBA</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Ahn, Eun Gong</creator><creator>Yang, Jin-Hoon</creator><creator>Lee, Joo-Hyoung</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7637-9825</orcidid></search><sort><creationdate>20211013</creationdate><title>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</title><author>Ahn, Eun Gong ; Yang, Jin-Hoon ; Lee, Joo-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-b887db39edbf4311bb0204e96ecfa315af283a94b991d0af813a67ce808579733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Eun Gong</creatorcontrib><creatorcontrib>Yang, Jin-Hoon</creatorcontrib><creatorcontrib>Lee, Joo-Hyoung</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Eun Gong</au><au>Yang, Jin-Hoon</au><au>Lee, Joo-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-13</date><risdate>2021</risdate><volume>13</volume><issue>40</issue><spage>47749</spage><epage>47755</epage><pages>47749-47755</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c16896</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7637-9825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-10, Vol.13 (40), p.47749-47755 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2577731301 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Energy, Environmental, and Catalysis Applications |
title | Mg3Si3(MoO6)2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg3Si3(MoO6)2%20as%20a%20High-Performance%20Cathode%20Active%20Material%20for%20Magnesium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ahn,%20Eun%20Gong&rft.date=2021-10-13&rft.volume=13&rft.issue=40&rft.spage=47749&rft.epage=47755&rft.pages=47749-47755&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c16896&rft_dat=%3Cproquest_acs_j%3E2577731301%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-b887db39edbf4311bb0204e96ecfa315af283a94b991d0af813a67ce808579733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577731301&rft_id=info:pmid/&rfr_iscdi=true |