Loading…
Ni2+ and Pr3+ Co-doped CsPbCl3 perovskite quantum dots with efficient infrared emission at 1300 nm
Lead halide perovskite quantum dots (PQDs) show great prospects in the field of optoelectronic applications. Although having high efficiency and narrow-band emission performance in the visible light region, the infrared multicolor luminescence performance of perovskite nanocrystals is still highly d...
Saved in:
Published in: | Nanoscale 2021-10, Vol.13 (39), p.16598-16607 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lead halide perovskite quantum dots (PQDs) show great prospects in the field of optoelectronic applications. Although having high efficiency and narrow-band emission performance in the visible light region, the infrared multicolor luminescence performance of perovskite nanocrystals is still highly desired. In this work, in order to increase the luminescence intensity and extend the infrared multicolor luminescence, transition metal and rare earth ions are co-doped into PQDs. Herein, PQDs emitting at 1300 nm are realized by Pr3+ doping, which has not been reported in previous literature. The luminescence and kinetic process of Ni2+ and Pr3+ co-doped CsPbCl3 PQDs are studied, which exhibit considerably enhanced emission intensity at 400 nm and 1300 nm, with an overall quantum efficiency of photoluminescence (PLQY) of 89% and the highest infrared PLQY of 23%. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d1nr04455a |