Loading…
High-strength scalable MXene films through bridging-induced densification
MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electric...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2021-10, Vol.374 (6563), p.96-99 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electrical reliabilities of titanium carbide MXene films are affected by voids in their structure. We applied sequential bridging of hydrogen and covalent bonding agents to induce the densification of MXene films and removal of the voids, leading to highly compact MXene films. The obtained MXene films show high tensile strength, in combination with high toughness, electrical conductivity, and EMI shielding capability. Our high-performance MXene films are scalable, providing an avenue for assembling other two-dimensional platelets into high-performance films. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.abg2026 |