Loading…
High-strength scalable MXene films through bridging-induced densification
MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electric...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2021-10, Vol.374 (6563), p.96-99 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643 |
container_end_page | 99 |
container_issue | 6563 |
container_start_page | 96 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 374 |
creator | Wan, Sijie Li, Xiang Chen, Ying Liu, Nana Du, Yi Dou, Shixue Jiang, Lei Cheng, Qunfeng |
description | MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electrical reliabilities of titanium carbide MXene films are affected by voids in their structure. We applied sequential bridging of hydrogen and covalent bonding agents to induce the densification of MXene films and removal of the voids, leading to highly compact MXene films. The obtained MXene films show high tensile strength, in combination with high toughness, electrical conductivity, and EMI shielding capability. Our high-performance MXene films are scalable, providing an avenue for assembling other two-dimensional platelets into high-performance films. |
doi_str_mv | 10.1126/science.abg2026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578759518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638095368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUws6FILCxp_Ygde0QV0EpFLCCxRY4fiavEKXYy8O9J1cDAdIb73aOjD4BbBJcIYbaKyhmvzFKWFYaYnYE5goKmAkNyDuYQEpZymNMZuIpxD-F4E-QSzEhGBWIEz8F246o6jX0wvurrJCrZyLIxyeun8Saxrmlj0tehG6o6KYPTlfNV6rwelNGJNj4665TsXeevwYWVTTQ3Uy7Ax_PT-3qT7t5etuvHXaoIpn1qsaVS5goxlPEccs2ohTSzBGe0RFjnZSYEQ8ZixDilWgpVZkQLKCznjGVkAR5OvYfQfQ0m9kXrojJNI73phlhgmvOcCor4iN7_Q_fdEPy4rsCM8NEGYUdqdaJU6GIMxhaH4FoZvgsEi6PlYrJcTJbHj7updyhbo__4X63kB_loeUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638095368</pqid></control><display><type>article</type><title>High-strength scalable MXene films through bridging-induced densification</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Wan, Sijie ; Li, Xiang ; Chen, Ying ; Liu, Nana ; Du, Yi ; Dou, Shixue ; Jiang, Lei ; Cheng, Qunfeng</creator><creatorcontrib>Wan, Sijie ; Li, Xiang ; Chen, Ying ; Liu, Nana ; Du, Yi ; Dou, Shixue ; Jiang, Lei ; Cheng, Qunfeng</creatorcontrib><description>MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electrical reliabilities of titanium carbide MXene films are affected by voids in their structure. We applied sequential bridging of hydrogen and covalent bonding agents to induce the densification of MXene films and removal of the voids, leading to highly compact MXene films. The obtained MXene films show high tensile strength, in combination with high toughness, electrical conductivity, and EMI shielding capability. Our high-performance MXene films are scalable, providing an avenue for assembling other two-dimensional platelets into high-performance films.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abg2026</identifier><identifier>PMID: 34591632</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Bonding agents ; Chemical bonds ; Densification ; Electrical conductivity ; Electrical resistivity ; Electromagnetic shielding ; Mechanical properties ; Metal carbides ; MXenes ; Nitrides ; Platelets ; Tensile strength ; Titanium ; Titanium carbide ; Toughness ; Transition metals ; Voids</subject><ispartof>Science (American Association for the Advancement of Science), 2021-10, Vol.374 (6563), p.96-99</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643</citedby><cites>FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643</cites><orcidid>0000-0003-1115-4892 ; 0000-0003-1797-3960 ; 0000-0001-7753-4877 ; 0000-0003-3824-7693 ; 0000-0003-4596-9977 ; 0000-0003-1932-6732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34591632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Sijie</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Nana</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Dou, Shixue</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Cheng, Qunfeng</creatorcontrib><title>High-strength scalable MXene films through bridging-induced densification</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electrical reliabilities of titanium carbide MXene films are affected by voids in their structure. We applied sequential bridging of hydrogen and covalent bonding agents to induce the densification of MXene films and removal of the voids, leading to highly compact MXene films. The obtained MXene films show high tensile strength, in combination with high toughness, electrical conductivity, and EMI shielding capability. Our high-performance MXene films are scalable, providing an avenue for assembling other two-dimensional platelets into high-performance films.</description><subject>Bonding agents</subject><subject>Chemical bonds</subject><subject>Densification</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electromagnetic shielding</subject><subject>Mechanical properties</subject><subject>Metal carbides</subject><subject>MXenes</subject><subject>Nitrides</subject><subject>Platelets</subject><subject>Tensile strength</subject><subject>Titanium</subject><subject>Titanium carbide</subject><subject>Toughness</subject><subject>Transition metals</subject><subject>Voids</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EoqUws6FILCxp_Ygde0QV0EpFLCCxRY4fiavEKXYy8O9J1cDAdIb73aOjD4BbBJcIYbaKyhmvzFKWFYaYnYE5goKmAkNyDuYQEpZymNMZuIpxD-F4E-QSzEhGBWIEz8F246o6jX0wvurrJCrZyLIxyeun8Saxrmlj0tehG6o6KYPTlfNV6rwelNGJNj4665TsXeevwYWVTTQ3Uy7Ax_PT-3qT7t5etuvHXaoIpn1qsaVS5goxlPEccs2ohTSzBGe0RFjnZSYEQ8ZixDilWgpVZkQLKCznjGVkAR5OvYfQfQ0m9kXrojJNI73phlhgmvOcCor4iN7_Q_fdEPy4rsCM8NEGYUdqdaJU6GIMxhaH4FoZvgsEi6PlYrJcTJbHj7updyhbo__4X63kB_loeUM</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Wan, Sijie</creator><creator>Li, Xiang</creator><creator>Chen, Ying</creator><creator>Liu, Nana</creator><creator>Du, Yi</creator><creator>Dou, Shixue</creator><creator>Jiang, Lei</creator><creator>Cheng, Qunfeng</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1115-4892</orcidid><orcidid>https://orcid.org/0000-0003-1797-3960</orcidid><orcidid>https://orcid.org/0000-0001-7753-4877</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid><orcidid>https://orcid.org/0000-0003-4596-9977</orcidid><orcidid>https://orcid.org/0000-0003-1932-6732</orcidid></search><sort><creationdate>202110</creationdate><title>High-strength scalable MXene films through bridging-induced densification</title><author>Wan, Sijie ; Li, Xiang ; Chen, Ying ; Liu, Nana ; Du, Yi ; Dou, Shixue ; Jiang, Lei ; Cheng, Qunfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bonding agents</topic><topic>Chemical bonds</topic><topic>Densification</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electromagnetic shielding</topic><topic>Mechanical properties</topic><topic>Metal carbides</topic><topic>MXenes</topic><topic>Nitrides</topic><topic>Platelets</topic><topic>Tensile strength</topic><topic>Titanium</topic><topic>Titanium carbide</topic><topic>Toughness</topic><topic>Transition metals</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Sijie</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Nana</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><creatorcontrib>Dou, Shixue</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Cheng, Qunfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Sijie</au><au>Li, Xiang</au><au>Chen, Ying</au><au>Liu, Nana</au><au>Du, Yi</au><au>Dou, Shixue</au><au>Jiang, Lei</au><au>Cheng, Qunfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-strength scalable MXene films through bridging-induced densification</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-10</date><risdate>2021</risdate><volume>374</volume><issue>6563</issue><spage>96</spage><epage>99</epage><pages>96-99</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>MXenes are a growing family of two-dimensional transition metal carbides and/or nitrides that are densely stacked into macroscopically layered films and have been considered for applications such as flexible electromagnetic interference (EMI) shielding materials. However, the mechanical and electrical reliabilities of titanium carbide MXene films are affected by voids in their structure. We applied sequential bridging of hydrogen and covalent bonding agents to induce the densification of MXene films and removal of the voids, leading to highly compact MXene films. The obtained MXene films show high tensile strength, in combination with high toughness, electrical conductivity, and EMI shielding capability. Our high-performance MXene films are scalable, providing an avenue for assembling other two-dimensional platelets into high-performance films.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>34591632</pmid><doi>10.1126/science.abg2026</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1115-4892</orcidid><orcidid>https://orcid.org/0000-0003-1797-3960</orcidid><orcidid>https://orcid.org/0000-0001-7753-4877</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid><orcidid>https://orcid.org/0000-0003-4596-9977</orcidid><orcidid>https://orcid.org/0000-0003-1932-6732</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-10, Vol.374 (6563), p.96-99 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2578759518 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Bonding agents Chemical bonds Densification Electrical conductivity Electrical resistivity Electromagnetic shielding Mechanical properties Metal carbides MXenes Nitrides Platelets Tensile strength Titanium Titanium carbide Toughness Transition metals Voids |
title | High-strength scalable MXene films through bridging-induced densification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-strength%20scalable%20MXene%20films%20through%20bridging-induced%20densification&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wan,%20Sijie&rft.date=2021-10&rft.volume=374&rft.issue=6563&rft.spage=96&rft.epage=99&rft.pages=96-99&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abg2026&rft_dat=%3Cproquest_cross%3E2638095368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-f2f5aa7c16148708d65f054f3245b12d7b49961ef216855da9cb43d909f886643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638095368&rft_id=info:pmid/34591632&rfr_iscdi=true |