Loading…
Lowering Electrocatalytic CO2 Reduction Overpotential Using N‑Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length
We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl...
Saved in:
Published in: | Journal of the American Chemical Society 2021-10, Vol.143 (40), p.16849-16864 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 16864 |
container_issue | 40 |
container_start_page | 16849 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Koenig, Josh D. B Dubrawski, Zachary S Rao, Keerthan R Willkomm, Janina Gelfand, Benjamin S Risko, Chad Piers, Warren E Welch, Gregory C |
description | We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at E appl = −1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at E appl = −2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion. |
doi_str_mv | 10.1021/jacs.1c09481 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578769522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578769522</sourcerecordid><originalsourceid>FETCH-LOGICAL-a151t-13582883f69578a1d40543934012eb4887c90250b03a4e27f5f148ef4bdddcb83</originalsourceid><addsrcrecordid>eNpFkM1OAjEURhujiYjufIAu3Qy2nQ5Tloj4kxAxBNxOOu0dKCkdbDsSdr6B8RV9EodI4urmy7335MtB6JqSHiWM3q6lCj2qyIALeoI6NGMkySjrn6IOIYQluein5-gihHUbORO0g74m9Q68cUs8tqCir5WM0u6jUXg0ZXgGulHR1A5PP8Bv6wguGmnxIhxeXn4-v4fONVZG0PgV_N6CA3xvzMZowLMVONNs8J3Z7r3R5rDaSx3wzsQVfpPeyNICnkNcgccTcMu4ukRnlbQBro6zixYP4_noKZlMH59Hw0kiaUZjQtNMMCHSqj_IciGp5iTj6SDlhDIouRC5GhCWkZKkkgPLq6yiXEDFS621KkXaRTd_3K2v3xsIsdiYoMBa6aBuQsFabN7CGfs_be0W67rxri1WUFIcnBcH58XRefoLTox3WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578769522</pqid></control><display><type>article</type><title>Lowering Electrocatalytic CO2 Reduction Overpotential Using N‑Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Koenig, Josh D. B ; Dubrawski, Zachary S ; Rao, Keerthan R ; Willkomm, Janina ; Gelfand, Benjamin S ; Risko, Chad ; Piers, Warren E ; Welch, Gregory C</creator><creatorcontrib>Koenig, Josh D. B ; Dubrawski, Zachary S ; Rao, Keerthan R ; Willkomm, Janina ; Gelfand, Benjamin S ; Risko, Chad ; Piers, Warren E ; Welch, Gregory C</creatorcontrib><description>We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at E appl = −1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at E appl = −2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c09481</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-10, Vol.143 (40), p.16849-16864</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8980-2944 ; 0000-0001-9838-5233 ; 0000-0003-3999-3874 ; 0000-0002-3768-937X ; 0000-0003-2278-1269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Koenig, Josh D. B</creatorcontrib><creatorcontrib>Dubrawski, Zachary S</creatorcontrib><creatorcontrib>Rao, Keerthan R</creatorcontrib><creatorcontrib>Willkomm, Janina</creatorcontrib><creatorcontrib>Gelfand, Benjamin S</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Piers, Warren E</creatorcontrib><creatorcontrib>Welch, Gregory C</creatorcontrib><title>Lowering Electrocatalytic CO2 Reduction Overpotential Using N‑Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at E appl = −1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at E appl = −2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OAjEURhujiYjufIAu3Qy2nQ5Tloj4kxAxBNxOOu0dKCkdbDsSdr6B8RV9EodI4urmy7335MtB6JqSHiWM3q6lCj2qyIALeoI6NGMkySjrn6IOIYQluein5-gihHUbORO0g74m9Q68cUs8tqCir5WM0u6jUXg0ZXgGulHR1A5PP8Bv6wguGmnxIhxeXn4-v4fONVZG0PgV_N6CA3xvzMZowLMVONNs8J3Z7r3R5rDaSx3wzsQVfpPeyNICnkNcgccTcMu4ukRnlbQBro6zixYP4_noKZlMH59Hw0kiaUZjQtNMMCHSqj_IciGp5iTj6SDlhDIouRC5GhCWkZKkkgPLq6yiXEDFS621KkXaRTd_3K2v3xsIsdiYoMBa6aBuQsFabN7CGfs_be0W67rxri1WUFIcnBcH58XRefoLTox3WA</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Koenig, Josh D. B</creator><creator>Dubrawski, Zachary S</creator><creator>Rao, Keerthan R</creator><creator>Willkomm, Janina</creator><creator>Gelfand, Benjamin S</creator><creator>Risko, Chad</creator><creator>Piers, Warren E</creator><creator>Welch, Gregory C</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8980-2944</orcidid><orcidid>https://orcid.org/0000-0001-9838-5233</orcidid><orcidid>https://orcid.org/0000-0003-3999-3874</orcidid><orcidid>https://orcid.org/0000-0002-3768-937X</orcidid><orcidid>https://orcid.org/0000-0003-2278-1269</orcidid></search><sort><creationdate>20211013</creationdate><title>Lowering Electrocatalytic CO2 Reduction Overpotential Using N‑Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length</title><author>Koenig, Josh D. B ; Dubrawski, Zachary S ; Rao, Keerthan R ; Willkomm, Janina ; Gelfand, Benjamin S ; Risko, Chad ; Piers, Warren E ; Welch, Gregory C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a151t-13582883f69578a1d40543934012eb4887c90250b03a4e27f5f148ef4bdddcb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koenig, Josh D. B</creatorcontrib><creatorcontrib>Dubrawski, Zachary S</creatorcontrib><creatorcontrib>Rao, Keerthan R</creatorcontrib><creatorcontrib>Willkomm, Janina</creatorcontrib><creatorcontrib>Gelfand, Benjamin S</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Piers, Warren E</creatorcontrib><creatorcontrib>Welch, Gregory C</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koenig, Josh D. B</au><au>Dubrawski, Zachary S</au><au>Rao, Keerthan R</au><au>Willkomm, Janina</au><au>Gelfand, Benjamin S</au><au>Risko, Chad</au><au>Piers, Warren E</au><au>Welch, Gregory C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lowering Electrocatalytic CO2 Reduction Overpotential Using N‑Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-10-13</date><risdate>2021</risdate><volume>143</volume><issue>40</issue><spage>16849</spage><epage>16864</epage><pages>16849-16864</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at E appl = −1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at E appl = −2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c09481</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8980-2944</orcidid><orcidid>https://orcid.org/0000-0001-9838-5233</orcidid><orcidid>https://orcid.org/0000-0003-3999-3874</orcidid><orcidid>https://orcid.org/0000-0002-3768-937X</orcidid><orcidid>https://orcid.org/0000-0003-2278-1269</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-10, Vol.143 (40), p.16849-16864 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2578769522 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Lowering Electrocatalytic CO2 Reduction Overpotential Using N‑Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lowering%20Electrocatalytic%20CO2%20Reduction%20Overpotential%20Using%20N%E2%80%91Annulated%20Perylene%20Diimide%20Rhenium%20Bipyridine%20Dyads%20with%20Variable%20Tether%20Length&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Koenig,%20Josh%20D.%20B&rft.date=2021-10-13&rft.volume=143&rft.issue=40&rft.spage=16849&rft.epage=16864&rft.pages=16849-16864&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c09481&rft_dat=%3Cproquest_acs_j%3E2578769522%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a151t-13582883f69578a1d40543934012eb4887c90250b03a4e27f5f148ef4bdddcb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578769522&rft_id=info:pmid/&rfr_iscdi=true |