Loading…

Chronic ozone exposure preferentially modifies root rather than foliar metabolism of date palm (Phoenix dactylifera) saplings

In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air cont...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2022-02, Vol.806 (Pt 2), p.150563-150563, Article 150563
Main Authors: Arab, L., Hoshika, Y., Müller, H., Cotrozzi, L., Nali, C., Tonelli, M., Ache, P., Paoletti, E., Alfarraj, S., Albasher, G., Hedrich, R., Rennenberg, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure reduced carbohydrate contents in leaves and roots, but this effect was much stronger in roots. Still, sucrose contents of both organs were maintained at elevated O3, though at different steady states. Reduced availability of carbohydrate for the Tricarboxylic acid cycle (TCA cycle) may be responsible for the observed reduced foliar contents of several amino acids, whereas malic acid accumulation in the roots indicates a reduced use of TCA cycle intermediates. Carbohydrate deficiency in roots, but not in leaves caused oxidative stress upon chronic O3 exposure, as indicated by enhanced malonedialdehyde, H2O2 and oxidized glutathione contents despite elevated glutathione reductase activity. Reduced levels of phenolics and flavonoids in the roots resulted from decreased production and, therefore, do not indicate oxidative stress compensation by secondary compounds. These results show that roots of date palms are highly susceptible to chronic O3 exposure as a consequence of carbohydrate deficiency. [Display omitted] •O3 affects roots rather than leaves as a consequence of strong carbohydrate deficiency.•Sucrose levels still were maintained at the expense of other carbohydrates.•Carbohydrate deficiency in the roots caused oxidative stress.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.150563