Loading…
Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting
Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), esp...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (4), p.e2104513-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3 |
container_end_page | n/a |
container_issue | 4 |
container_start_page | e2104513 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Wen, Qunlei Zhao, Yang Liu, Youwen Li, Huiqiao Zhai, Tianyou |
description | Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials ( |
doi_str_mv | 10.1002/smll.202104513 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579089100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622896383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EolBYGVEkFpYU33LxiEq5SEEMbcVouYndpnKSYjtC2XgEnpEnwVFLkViYztE53_l19AFwgeAIQYhvbKX1CEOMII0QOQAnKEYkjFPMDvc9ggNwau0aQoIwTY7BgNAYRiiiJ4DPtTNiVS5XXx-f49YYWTvf3cnalq4LRF0EWVMv_WgmTdVvWiMWpe6XEy1zZ5pcOKE762ygGhO8CidNMN14wpX18gwcKaGtPN_VIZjfT2bjxzB7eXga32ZhTgkjYSEwJCqCjFEhcpEm1L8oI1nQhCYxTnChcgYLTFNFSexLoRYi9ThRGDMiyBBcb3M3pnlrpXW8Km0utRa1bFrLcZQwmDLvzKNXf9B105raf8dxjHHKYpIST422VG4aa41UfGPKSpiOI8h79bxXz_fq_cHlLrZdVLLY4z-uPcC2wHupZfdPHJ8-Z9lv-DcDdpQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622896383</pqid></control><display><type>article</type><title>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wen, Qunlei ; Zhao, Yang ; Liu, Youwen ; Li, Huiqiao ; Zhai, Tianyou</creator><creatorcontrib>Wen, Qunlei ; Zhao, Yang ; Liu, Youwen ; Li, Huiqiao ; Zhai, Tianyou</creatorcontrib><description>Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (<300 mV), seem extremely critical for green hydrogen from experiment to industrialization. Along the way, numerous innovative ideas are proposed to design high efficiency electrocatalysts in line with industrial requirements, which also stimulates the understanding of the mass/charge transfer and mechanical stability during the electrochemical process. It is of great necessity to summarize and sort out the accumulating knowledge in time for the development of laboratory to commercial use in this promising field. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with high current densities and excellent durability. Special attention is paid to acquaint efficient strategies to design perfect electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength. Finally, the importance and the personal perspective on future opportunities and challenges, is highlighted.
This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with large current densities and excellent durability. Special attention of this review is paid to acquaint efficient strategies to design satisfactory electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104513</identifier><identifier>PMID: 34605154</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Charge transfer ; Current density ; Durability ; Electrical resistivity ; Electrocatalysts ; Hydrogen ; Hydrogen fuels ; hydrogen production ; Hydrogen-based energy ; long‐term durability ; Mass transfer ; Nanotechnology ; ultrahigh current density ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (4), p.e2104513-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</citedby><cites>FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</cites><orcidid>0000-0003-0985-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34605154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Qunlei</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Youwen</creatorcontrib><creatorcontrib>Li, Huiqiao</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><title>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (<300 mV), seem extremely critical for green hydrogen from experiment to industrialization. Along the way, numerous innovative ideas are proposed to design high efficiency electrocatalysts in line with industrial requirements, which also stimulates the understanding of the mass/charge transfer and mechanical stability during the electrochemical process. It is of great necessity to summarize and sort out the accumulating knowledge in time for the development of laboratory to commercial use in this promising field. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with high current densities and excellent durability. Special attention is paid to acquaint efficient strategies to design perfect electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength. Finally, the importance and the personal perspective on future opportunities and challenges, is highlighted.
This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with large current densities and excellent durability. Special attention of this review is paid to acquaint efficient strategies to design satisfactory electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength.</description><subject>Atomic structure</subject><subject>Charge transfer</subject><subject>Current density</subject><subject>Durability</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Hydrogen</subject><subject>Hydrogen fuels</subject><subject>hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>long‐term durability</subject><subject>Mass transfer</subject><subject>Nanotechnology</subject><subject>ultrahigh current density</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EolBYGVEkFpYU33LxiEq5SEEMbcVouYndpnKSYjtC2XgEnpEnwVFLkViYztE53_l19AFwgeAIQYhvbKX1CEOMII0QOQAnKEYkjFPMDvc9ggNwau0aQoIwTY7BgNAYRiiiJ4DPtTNiVS5XXx-f49YYWTvf3cnalq4LRF0EWVMv_WgmTdVvWiMWpe6XEy1zZ5pcOKE762ygGhO8CidNMN14wpX18gwcKaGtPN_VIZjfT2bjxzB7eXga32ZhTgkjYSEwJCqCjFEhcpEm1L8oI1nQhCYxTnChcgYLTFNFSexLoRYi9ThRGDMiyBBcb3M3pnlrpXW8Km0utRa1bFrLcZQwmDLvzKNXf9B105raf8dxjHHKYpIST422VG4aa41UfGPKSpiOI8h79bxXz_fq_cHlLrZdVLLY4z-uPcC2wHupZfdPHJ8-Z9lv-DcDdpQE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wen, Qunlei</creator><creator>Zhao, Yang</creator><creator>Liu, Youwen</creator><creator>Li, Huiqiao</creator><creator>Zhai, Tianyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></search><sort><creationdate>20220101</creationdate><title>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</title><author>Wen, Qunlei ; Zhao, Yang ; Liu, Youwen ; Li, Huiqiao ; Zhai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic structure</topic><topic>Charge transfer</topic><topic>Current density</topic><topic>Durability</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Hydrogen</topic><topic>Hydrogen fuels</topic><topic>hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>long‐term durability</topic><topic>Mass transfer</topic><topic>Nanotechnology</topic><topic>ultrahigh current density</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Qunlei</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Youwen</creatorcontrib><creatorcontrib>Li, Huiqiao</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Qunlei</au><au>Zhao, Yang</au><au>Liu, Youwen</au><au>Li, Huiqiao</au><au>Zhai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>4</issue><spage>e2104513</spage><epage>n/a</epage><pages>e2104513-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (<300 mV), seem extremely critical for green hydrogen from experiment to industrialization. Along the way, numerous innovative ideas are proposed to design high efficiency electrocatalysts in line with industrial requirements, which also stimulates the understanding of the mass/charge transfer and mechanical stability during the electrochemical process. It is of great necessity to summarize and sort out the accumulating knowledge in time for the development of laboratory to commercial use in this promising field. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with high current densities and excellent durability. Special attention is paid to acquaint efficient strategies to design perfect electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength. Finally, the importance and the personal perspective on future opportunities and challenges, is highlighted.
This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with large current densities and excellent durability. Special attention of this review is paid to acquaint efficient strategies to design satisfactory electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34605154</pmid><doi>10.1002/smll.202104513</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (4), p.e2104513-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2579089100 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Atomic structure Charge transfer Current density Durability Electrical resistivity Electrocatalysts Hydrogen Hydrogen fuels hydrogen production Hydrogen-based energy long‐term durability Mass transfer Nanotechnology ultrahigh current density Water splitting |
title | Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90Current%E2%80%90Density%20and%20Long%E2%80%90Term%E2%80%90Durability%20Electrocatalysts%20for%20Water%20Splitting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wen,%20Qunlei&rft.date=2022-01-01&rft.volume=18&rft.issue=4&rft.spage=e2104513&rft.epage=n/a&rft.pages=e2104513-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104513&rft_dat=%3Cproquest_cross%3E2622896383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622896383&rft_id=info:pmid/34605154&rfr_iscdi=true |