Loading…

Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting

Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), esp...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (4), p.e2104513-n/a
Main Authors: Wen, Qunlei, Zhao, Yang, Liu, Youwen, Li, Huiqiao, Zhai, Tianyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3
cites cdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3
container_end_page n/a
container_issue 4
container_start_page e2104513
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Wen, Qunlei
Zhao, Yang
Liu, Youwen
Li, Huiqiao
Zhai, Tianyou
description Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (
doi_str_mv 10.1002/smll.202104513
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579089100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622896383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EolBYGVEkFpYU33LxiEq5SEEMbcVouYndpnKSYjtC2XgEnpEnwVFLkViYztE53_l19AFwgeAIQYhvbKX1CEOMII0QOQAnKEYkjFPMDvc9ggNwau0aQoIwTY7BgNAYRiiiJ4DPtTNiVS5XXx-f49YYWTvf3cnalq4LRF0EWVMv_WgmTdVvWiMWpe6XEy1zZ5pcOKE762ygGhO8CidNMN14wpX18gwcKaGtPN_VIZjfT2bjxzB7eXga32ZhTgkjYSEwJCqCjFEhcpEm1L8oI1nQhCYxTnChcgYLTFNFSexLoRYi9ThRGDMiyBBcb3M3pnlrpXW8Km0utRa1bFrLcZQwmDLvzKNXf9B105raf8dxjHHKYpIST422VG4aa41UfGPKSpiOI8h79bxXz_fq_cHlLrZdVLLY4z-uPcC2wHupZfdPHJ8-Z9lv-DcDdpQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622896383</pqid></control><display><type>article</type><title>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wen, Qunlei ; Zhao, Yang ; Liu, Youwen ; Li, Huiqiao ; Zhai, Tianyou</creator><creatorcontrib>Wen, Qunlei ; Zhao, Yang ; Liu, Youwen ; Li, Huiqiao ; Zhai, Tianyou</creatorcontrib><description>Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (&lt;300 mV), seem extremely critical for green hydrogen from experiment to industrialization. Along the way, numerous innovative ideas are proposed to design high efficiency electrocatalysts in line with industrial requirements, which also stimulates the understanding of the mass/charge transfer and mechanical stability during the electrochemical process. It is of great necessity to summarize and sort out the accumulating knowledge in time for the development of laboratory to commercial use in this promising field. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with high current densities and excellent durability. Special attention is paid to acquaint efficient strategies to design perfect electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength. Finally, the importance and the personal perspective on future opportunities and challenges, is highlighted. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with large current densities and excellent durability. Special attention of this review is paid to acquaint efficient strategies to design satisfactory electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104513</identifier><identifier>PMID: 34605154</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Charge transfer ; Current density ; Durability ; Electrical resistivity ; Electrocatalysts ; Hydrogen ; Hydrogen fuels ; hydrogen production ; Hydrogen-based energy ; long‐term durability ; Mass transfer ; Nanotechnology ; ultrahigh current density ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (4), p.e2104513-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</citedby><cites>FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</cites><orcidid>0000-0003-0985-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34605154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Qunlei</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Youwen</creatorcontrib><creatorcontrib>Li, Huiqiao</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><title>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (&lt;300 mV), seem extremely critical for green hydrogen from experiment to industrialization. Along the way, numerous innovative ideas are proposed to design high efficiency electrocatalysts in line with industrial requirements, which also stimulates the understanding of the mass/charge transfer and mechanical stability during the electrochemical process. It is of great necessity to summarize and sort out the accumulating knowledge in time for the development of laboratory to commercial use in this promising field. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with high current densities and excellent durability. Special attention is paid to acquaint efficient strategies to design perfect electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength. Finally, the importance and the personal perspective on future opportunities and challenges, is highlighted. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with large current densities and excellent durability. Special attention of this review is paid to acquaint efficient strategies to design satisfactory electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength.</description><subject>Atomic structure</subject><subject>Charge transfer</subject><subject>Current density</subject><subject>Durability</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Hydrogen</subject><subject>Hydrogen fuels</subject><subject>hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>long‐term durability</subject><subject>Mass transfer</subject><subject>Nanotechnology</subject><subject>ultrahigh current density</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EolBYGVEkFpYU33LxiEq5SEEMbcVouYndpnKSYjtC2XgEnpEnwVFLkViYztE53_l19AFwgeAIQYhvbKX1CEOMII0QOQAnKEYkjFPMDvc9ggNwau0aQoIwTY7BgNAYRiiiJ4DPtTNiVS5XXx-f49YYWTvf3cnalq4LRF0EWVMv_WgmTdVvWiMWpe6XEy1zZ5pcOKE762ygGhO8CidNMN14wpX18gwcKaGtPN_VIZjfT2bjxzB7eXga32ZhTgkjYSEwJCqCjFEhcpEm1L8oI1nQhCYxTnChcgYLTFNFSexLoRYi9ThRGDMiyBBcb3M3pnlrpXW8Km0utRa1bFrLcZQwmDLvzKNXf9B105raf8dxjHHKYpIST422VG4aa41UfGPKSpiOI8h79bxXz_fq_cHlLrZdVLLY4z-uPcC2wHupZfdPHJ8-Z9lv-DcDdpQE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wen, Qunlei</creator><creator>Zhao, Yang</creator><creator>Liu, Youwen</creator><creator>Li, Huiqiao</creator><creator>Zhai, Tianyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></search><sort><creationdate>20220101</creationdate><title>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</title><author>Wen, Qunlei ; Zhao, Yang ; Liu, Youwen ; Li, Huiqiao ; Zhai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic structure</topic><topic>Charge transfer</topic><topic>Current density</topic><topic>Durability</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Hydrogen</topic><topic>Hydrogen fuels</topic><topic>hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>long‐term durability</topic><topic>Mass transfer</topic><topic>Nanotechnology</topic><topic>ultrahigh current density</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Qunlei</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Youwen</creatorcontrib><creatorcontrib>Li, Huiqiao</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Qunlei</au><au>Zhao, Yang</au><au>Liu, Youwen</au><au>Li, Huiqiao</au><au>Zhai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>4</issue><spage>e2104513</spage><epage>n/a</epage><pages>e2104513-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Hydrogen economy is imagined where excess electric energy from renewable sources stored directly by electrochemical water splitting into hydrogen is later used as clean hydrogen fuel. Electrocatalysts with the superhigh current density (1000 mA cm−2‐level) and long‐term durability (over 1000 h), especially at low overpotentials (&lt;300 mV), seem extremely critical for green hydrogen from experiment to industrialization. Along the way, numerous innovative ideas are proposed to design high efficiency electrocatalysts in line with industrial requirements, which also stimulates the understanding of the mass/charge transfer and mechanical stability during the electrochemical process. It is of great necessity to summarize and sort out the accumulating knowledge in time for the development of laboratory to commercial use in this promising field. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with high current densities and excellent durability. Special attention is paid to acquaint efficient strategies to design perfect electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength. Finally, the importance and the personal perspective on future opportunities and challenges, is highlighted. This review begins with examining the theoretical principles of achieving high‐efficiency electrocatalysts with large current densities and excellent durability. Special attention of this review is paid to acquaint efficient strategies to design satisfactory electrocatalysts including atomic structure regulation for electrical conductivity and reaction energy barrier, array configuration constructing for mass transfer process, and multiscale coupling for high mechanical strength.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34605154</pmid><doi>10.1002/smll.202104513</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (4), p.e2104513-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2579089100
source Wiley-Blackwell Read & Publish Collection
subjects Atomic structure
Charge transfer
Current density
Durability
Electrical resistivity
Electrocatalysts
Hydrogen
Hydrogen fuels
hydrogen production
Hydrogen-based energy
long‐term durability
Mass transfer
Nanotechnology
ultrahigh current density
Water splitting
title Ultrahigh‐Current‐Density and Long‐Term‐Durability Electrocatalysts for Water Splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90Current%E2%80%90Density%20and%20Long%E2%80%90Term%E2%80%90Durability%20Electrocatalysts%20for%20Water%20Splitting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wen,%20Qunlei&rft.date=2022-01-01&rft.volume=18&rft.issue=4&rft.spage=e2104513&rft.epage=n/a&rft.pages=e2104513-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104513&rft_dat=%3Cproquest_cross%3E2622896383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4393-da203f50994aaca874346e5ed47476272dfc90d248f436248dfba80993f2293a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622896383&rft_id=info:pmid/34605154&rfr_iscdi=true