Loading…
Gas and gas-generating nanoplatforms in cancer therapy
Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H 2 ), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H 2 S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitocho...
Saved in:
Published in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-10, Vol.9 (41), p.8541-8557 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753 |
container_end_page | 8557 |
container_issue | 41 |
container_start_page | 8541 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 9 |
creator | Jing, Yuan-Zhe Li, Shu-Jin Sun, Zhi-Jun |
description | Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H
2
), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H
2
S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H
2
S and H
2
in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Gas-generating nanoplatforms have promising therapeutic potential for cancer treatment. |
doi_str_mv | 10.1039/d1tb01661j |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2579376942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586467937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgipO5i3el4EWEatJ8NDnq1KkMvEzwVtL07exo05q0h_33Zm5OMJc38P54CE8QOiP4hmCqbgvS55gIQVYH6CTBHMcpJ_Jwf8cfIzTxfoXDkURIyo7RiDKBpUrwCRIz7SNti2ipfbwEC073lV1GVtu2q3Vftq7xUWUjo60BF_WfQXTrU3RU6trDZDfH6P3pcTF9judvs5fp3Tw2NJV9zHFCGORMEyYYN7k0SuRFSamROdcgtRFKU8VJIjEYRQpMGQdgIk9SgJTTMbra5nau_RrA91lTeQN1rS20g88SniqaCsWSQC__0VU7OBteF5QUTGxkUNdbZVzrvYMy61zVaLfOCM42hWYPZHH_U-hrwBe7yCFvoNjT3_oCON8C581--_cj9Bubengu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586467937</pqid></control><display><type>article</type><title>Gas and gas-generating nanoplatforms in cancer therapy</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Jing, Yuan-Zhe ; Li, Shu-Jin ; Sun, Zhi-Jun</creator><creatorcontrib>Jing, Yuan-Zhe ; Li, Shu-Jin ; Sun, Zhi-Jun</creatorcontrib><description>Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H
2
), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H
2
S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H
2
S and H
2
in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Gas-generating nanoplatforms have promising therapeutic potential for cancer treatment.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb01661j</identifier><identifier>PMID: 34608920</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Apoptosis ; Cancer ; Cancer therapies ; Carbon monoxide ; Carbon Monoxide - chemistry ; Carbon Monoxide - pharmacology ; Controlled release ; Gases ; Gases - chemistry ; Gases - pharmacology ; Humans ; Hydrogen - chemistry ; Hydrogen - pharmacology ; Hydrogen sulfide ; Hydrogen Sulfide - chemistry ; Hydrogen Sulfide - pharmacology ; Macrophages ; Microenvironments ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Nanoparticles - chemistry ; Nanotechnology ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Nitric oxide ; Nitric Oxide - chemistry ; Nitric Oxide - pharmacology ; Phenotypes ; Side effects ; Therapy ; Tumor microenvironment ; Tumors</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-10, Vol.9 (41), p.8541-8557</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753</citedby><cites>FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753</cites><orcidid>0000-0001-8247-1874 ; 0000-0003-0932-8013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34608920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jing, Yuan-Zhe</creatorcontrib><creatorcontrib>Li, Shu-Jin</creatorcontrib><creatorcontrib>Sun, Zhi-Jun</creatorcontrib><title>Gas and gas-generating nanoplatforms in cancer therapy</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H
2
), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H
2
S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H
2
S and H
2
in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Gas-generating nanoplatforms have promising therapeutic potential for cancer treatment.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>Carbon Monoxide - pharmacology</subject><subject>Controlled release</subject><subject>Gases</subject><subject>Gases - chemistry</subject><subject>Gases - pharmacology</subject><subject>Humans</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - pharmacology</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>Hydrogen Sulfide - pharmacology</subject><subject>Macrophages</subject><subject>Microenvironments</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - chemistry</subject><subject>Nitric Oxide - pharmacology</subject><subject>Phenotypes</subject><subject>Side effects</subject><subject>Therapy</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAYBvAgipO5i3el4EWEatJ8NDnq1KkMvEzwVtL07exo05q0h_33Zm5OMJc38P54CE8QOiP4hmCqbgvS55gIQVYH6CTBHMcpJ_Jwf8cfIzTxfoXDkURIyo7RiDKBpUrwCRIz7SNti2ipfbwEC073lV1GVtu2q3Vftq7xUWUjo60BF_WfQXTrU3RU6trDZDfH6P3pcTF9judvs5fp3Tw2NJV9zHFCGORMEyYYN7k0SuRFSamROdcgtRFKU8VJIjEYRQpMGQdgIk9SgJTTMbra5nau_RrA91lTeQN1rS20g88SniqaCsWSQC__0VU7OBteF5QUTGxkUNdbZVzrvYMy61zVaLfOCM42hWYPZHH_U-hrwBe7yCFvoNjT3_oCON8C581--_cj9Bubengu</recordid><startdate>20211027</startdate><enddate>20211027</enddate><creator>Jing, Yuan-Zhe</creator><creator>Li, Shu-Jin</creator><creator>Sun, Zhi-Jun</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8247-1874</orcidid><orcidid>https://orcid.org/0000-0003-0932-8013</orcidid></search><sort><creationdate>20211027</creationdate><title>Gas and gas-generating nanoplatforms in cancer therapy</title><author>Jing, Yuan-Zhe ; Li, Shu-Jin ; Sun, Zhi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>Carbon Monoxide - pharmacology</topic><topic>Controlled release</topic><topic>Gases</topic><topic>Gases - chemistry</topic><topic>Gases - pharmacology</topic><topic>Humans</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - pharmacology</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>Hydrogen Sulfide - pharmacology</topic><topic>Macrophages</topic><topic>Microenvironments</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - chemistry</topic><topic>Nitric Oxide - pharmacology</topic><topic>Phenotypes</topic><topic>Side effects</topic><topic>Therapy</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Yuan-Zhe</creatorcontrib><creatorcontrib>Li, Shu-Jin</creatorcontrib><creatorcontrib>Sun, Zhi-Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Yuan-Zhe</au><au>Li, Shu-Jin</au><au>Sun, Zhi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas and gas-generating nanoplatforms in cancer therapy</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2021-10-27</date><risdate>2021</risdate><volume>9</volume><issue>41</issue><spage>8541</spage><epage>8557</epage><pages>8541-8557</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H
2
), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H
2
S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H
2
S and H
2
in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Gas-generating nanoplatforms have promising therapeutic potential for cancer treatment.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34608920</pmid><doi>10.1039/d1tb01661j</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8247-1874</orcidid><orcidid>https://orcid.org/0000-0003-0932-8013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2021-10, Vol.9 (41), p.8541-8557 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_2579376942 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Apoptosis Cancer Cancer therapies Carbon monoxide Carbon Monoxide - chemistry Carbon Monoxide - pharmacology Controlled release Gases Gases - chemistry Gases - pharmacology Humans Hydrogen - chemistry Hydrogen - pharmacology Hydrogen sulfide Hydrogen Sulfide - chemistry Hydrogen Sulfide - pharmacology Macrophages Microenvironments Mitochondria Mitochondria - drug effects Mitochondria - metabolism Nanoparticles - chemistry Nanotechnology Neoplasms - drug therapy Neoplasms - metabolism Nitric oxide Nitric Oxide - chemistry Nitric Oxide - pharmacology Phenotypes Side effects Therapy Tumor microenvironment Tumors |
title | Gas and gas-generating nanoplatforms in cancer therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20and%20gas-generating%20nanoplatforms%20in%20cancer%20therapy&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Jing,%20Yuan-Zhe&rft.date=2021-10-27&rft.volume=9&rft.issue=41&rft.spage=8541&rft.epage=8557&rft.pages=8541-8557&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb01661j&rft_dat=%3Cproquest_pubme%3E2586467937%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-50214eb4a14645cb8c96bdf33c8b5ae8ac69a3951280ec91d0345ee46b27ee753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586467937&rft_id=info:pmid/34608920&rfr_iscdi=true |