Loading…

Enhancement of electrocatalytic abilities toward CO2 reduction by tethering redox-active metal complexes to the active site

Tethering metal complexes, like [Ru(bpy)2Cl2] (bpy = 2,2′-bipyridine), which are redox-active at low reduction potentials and have the ability to transfer electrons to another complex, to a [Ni(cyclen)]2+ electrocatalyst enhanced the reduction of CO2 to CO at low overpotentials. The [Ni(cyclen)]2+ e...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2021-10, Vol.50 (38), p.13368-13373
Main Authors: Habib Md Ahsan, Breedlove, Brian K, Cosquer, Goulven, Yamashita, Masahiro
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tethering metal complexes, like [Ru(bpy)2Cl2] (bpy = 2,2′-bipyridine), which are redox-active at low reduction potentials and have the ability to transfer electrons to another complex, to a [Ni(cyclen)]2+ electrocatalyst enhanced the reduction of CO2 to CO at low overpotentials. The [Ni(cyclen)]2+ electrocatalyst was modified by tethering redox-active metal complexes via 4-methylpyridyl linkers. The redox-active metal complexes were reduced after CO2 bound to the active site. In controlled potential electrolysis (CPE) experiments in 95 : 5 (v/v) CH3CN/H2O, [{([Ru]pic)4cyclen}NiCl]5+ ([Ru]+ = {Ru(bpy)2Cl}+; pic = 4-methylpyridyl) could be used to reduce CO2 into CO at a turnover frequency (TOF) of 708 s−1 with a faradaic efficiency (FE) of 80% at an onset potential of −1.60 V vs. NHE. At the same time, this electrocatalyst was active at an onset potential of −1.25 V vs. NHE, which is the reduction potential of one of the bpy ligands of the [Ru]+ moieties, with FE = 84% and TOF = 178 s−1. When the electrocatalysis was performed using [bn4cyclenNiCl]Cl (bn = benzyl) without tethered redox-active metal complexes, the TOF value was determined to be 8 s−1 with FE = 77% at an onset potential of −1.45 V vs. NHE. The results show that tethering redox-active metal complexes significantly improves the electrocatalytic activities by lowering the potential needed to reduce CO2.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt02318g