Loading…

Key Odorants of Raw and Cooked Green Kohlrabi (Brassica oleracea var. gongylodes L.)

Volatile compounds of raw and cooked green kohlrabi were investigated using a sensomics approach. A total of 55 odor-active compounds were detected and identified in raw and cooked green kohlrabi using GC-O. Twenty-eight odor-active compounds with high flavor dilution (FD) factors ranging from 64 to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2021-10, Vol.69 (41), p.12270-12277
Main Authors: Marcinkowska, Monika, Frank, Stephanie, Steinhaus, Martin, Jeleń, Henryk H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Volatile compounds of raw and cooked green kohlrabi were investigated using a sensomics approach. A total of 55 odor-active compounds were detected and identified in raw and cooked green kohlrabi using GC-O. Twenty-eight odor-active compounds with high flavor dilution (FD) factors ranging from 64 to 1024 were quantitated, and odor activity values (OAVs) were determined. Eight compounds showed high OAVs in raw and cooked kohlrabi: five sulfur compounds (dimethyl trisulfide, methyl 2-methyl-3-furyl disulfide, and three isothiocyanates (1-isothiocyanato-3-(methylsulfanyl)­propane, benzyl isothiocyanate, and 1-isothiocyanato-4-(methylsulfanyl)­butane)), two lipid oxidation products (1-octen-3-one and trans-4,5-epoxy-(2E)-dec-2-enal), and 2-isopropyl-3-methoxypyrazine. Among these, the sulfur compounds contributed most to the overall smell of the raw and cooked vegetables. The quantitation analysis indicates that the eight odorants are the backbone compounds for raw and cooked kohlrabi. The OAVs for the backbone compounds and also for minor odorants are clearly higher in raw kohlrabi than in the cooked one. Differences can be explained by the influence of the cooking process.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c04339