Loading…
Reconstruction and modeling of the complex refractive index of nonlinear glasses from terahertz to optical frequencies
The linear complex refractive index of a set of borosilicate and tellurite as well as heavy metal oxide silicate, germanate and fluoride glasses has been determined using the Kramers-Kronig analysis on combined data from terahertz time domain (THz-TD) and Fourier transform infrared (FTIR) spectromet...
Saved in:
Published in: | Optics express 2021-08, Vol.29 (16), p.26191-26209 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The linear complex refractive index of a set of borosilicate and tellurite as well as heavy metal oxide silicate, germanate and fluoride glasses has been determined using the Kramers-Kronig analysis on combined data from terahertz time domain (THz-TD) and Fourier transform infrared (FTIR) spectrometers in the ultrabroadband range of 0.15 THz to 200 THz. Debye, Lorentz and shape language modeling (SLM) approaches are applied. Far-infrared absorption power-law model parameters are determined via searching for the largest frequency range that minimizes the root mean squared error (RMSE) of a linear least squares fit for the set of glasses and other glass literature data. Relationships between the absorption parameters, glass properties and compositions are explored. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.431430 |