Loading…

Improving the Classification Performance of Dendrite Morphological Neurons

Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2023-08, Vol.34 (8), p.4659-4673
Main Authors: Gomez-Flores, Wilfrido, Sossa, Humberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083
cites cdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083
container_end_page 4673
container_issue 8
container_start_page 4659
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Gomez-Flores, Wilfrido
Sossa, Humberto
description Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, k -nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.
doi_str_mv 10.1109/TNNLS.2021.3116519
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580692808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9565144</ieee_id><sourcerecordid>2580692808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhi1EBSjwB4qEVuLCJcHjr9hHFCgEpWmlplJvlnd3HBbtroO9W6n_vhsScmAuM9I872j0EPIV6ASAmtvVcrn4NWGUwYQDKAnmiJwxUGzMuNbHh3n655RcpPRKh1JUKmFOyCkXinGm5Rl5njebGP5W7TrrXjCb1S6lyleF66rQZj8x-hAb1xaYBZ_dY1vGqsPse4ibl1CH9QDW2RL7GNp0Tr54Vye82PcR-f3tYTV7Gi9-PM5nd4txwSV0Y4U58NI4SrE0NIdclkapqcqnpXYcBFBHueceXCGAeeNyWioQ3hnNpaOaj8jN7u7w-FuPqbNNlQqsa9di6JNlUlNlmH5Hrz-hr6GP7fCdZVrIqTJCwUCxHVXEkFJEbzexalz8Z4HarWz7LttuZdu97CF0tT_d5w2Wh8iH2gG43AEVIh7WRg5pIfh_DweCYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845769461</pqid></control><display><type>article</type><title>Improving the Classification Performance of Dendrite Morphological Neurons</title><source>IEEE Xplore (Online service)</source><creator>Gomez-Flores, Wilfrido ; Sossa, Humberto</creator><creatorcontrib>Gomez-Flores, Wilfrido ; Sossa, Humberto</creatorcontrib><description>Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3116519</identifier><identifier>PMID: 34623285</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Brain modeling ; Classification ; Coarseness ; Complexity ; Configuration management ; Covariance matrices ; Decision trees ; Dendrite morphological neurons (DMNs) ; Dendrites ; Dendrites (neurons) ; Geometric accuracy ; geometric shape ; Geometry ; Mathematical models ; Model accuracy ; Morphology ; Multilayer perceptrons ; Neurons ; Pattern classification ; Performance assessment ; Radial basis function ; Shape ; smooth activation functions ; softmax layer ; Support vector machines ; Training ; World problems</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-08, Vol.34 (8), p.4659-4673</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</citedby><cites>FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</cites><orcidid>0000-0001-6758-6155 ; 0000-0002-0521-4898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9565144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34623285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Flores, Wilfrido</creatorcontrib><creatorcontrib>Sossa, Humberto</creatorcontrib><title>Improving the Classification Performance of Dendrite Morphological Neurons</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Coarseness</subject><subject>Complexity</subject><subject>Configuration management</subject><subject>Covariance matrices</subject><subject>Decision trees</subject><subject>Dendrite morphological neurons (DMNs)</subject><subject>Dendrites</subject><subject>Dendrites (neurons)</subject><subject>Geometric accuracy</subject><subject>geometric shape</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Morphology</subject><subject>Multilayer perceptrons</subject><subject>Neurons</subject><subject>Pattern classification</subject><subject>Performance assessment</subject><subject>Radial basis function</subject><subject>Shape</subject><subject>smooth activation functions</subject><subject>softmax layer</subject><subject>Support vector machines</subject><subject>Training</subject><subject>World problems</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhi1EBSjwB4qEVuLCJcHjr9hHFCgEpWmlplJvlnd3HBbtroO9W6n_vhsScmAuM9I872j0EPIV6ASAmtvVcrn4NWGUwYQDKAnmiJwxUGzMuNbHh3n655RcpPRKh1JUKmFOyCkXinGm5Rl5njebGP5W7TrrXjCb1S6lyleF66rQZj8x-hAb1xaYBZ_dY1vGqsPse4ibl1CH9QDW2RL7GNp0Tr54Vye82PcR-f3tYTV7Gi9-PM5nd4txwSV0Y4U58NI4SrE0NIdclkapqcqnpXYcBFBHueceXCGAeeNyWioQ3hnNpaOaj8jN7u7w-FuPqbNNlQqsa9di6JNlUlNlmH5Hrz-hr6GP7fCdZVrIqTJCwUCxHVXEkFJEbzexalz8Z4HarWz7LttuZdu97CF0tT_d5w2Wh8iH2gG43AEVIh7WRg5pIfh_DweCYA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gomez-Flores, Wilfrido</creator><creator>Sossa, Humberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6758-6155</orcidid><orcidid>https://orcid.org/0000-0002-0521-4898</orcidid></search><sort><creationdate>20230801</creationdate><title>Improving the Classification Performance of Dendrite Morphological Neurons</title><author>Gomez-Flores, Wilfrido ; Sossa, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Coarseness</topic><topic>Complexity</topic><topic>Configuration management</topic><topic>Covariance matrices</topic><topic>Decision trees</topic><topic>Dendrite morphological neurons (DMNs)</topic><topic>Dendrites</topic><topic>Dendrites (neurons)</topic><topic>Geometric accuracy</topic><topic>geometric shape</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Morphology</topic><topic>Multilayer perceptrons</topic><topic>Neurons</topic><topic>Pattern classification</topic><topic>Performance assessment</topic><topic>Radial basis function</topic><topic>Shape</topic><topic>smooth activation functions</topic><topic>softmax layer</topic><topic>Support vector machines</topic><topic>Training</topic><topic>World problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Flores, Wilfrido</creatorcontrib><creatorcontrib>Sossa, Humberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Flores, Wilfrido</au><au>Sossa, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Classification Performance of Dendrite Morphological Neurons</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>4659</spage><epage>4673</epage><pages>4659-4673</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34623285</pmid><doi>10.1109/TNNLS.2021.3116519</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6758-6155</orcidid><orcidid>https://orcid.org/0000-0002-0521-4898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-08, Vol.34 (8), p.4659-4673
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2580692808
source IEEE Xplore (Online service)
subjects Accuracy
Algorithms
Brain modeling
Classification
Coarseness
Complexity
Configuration management
Covariance matrices
Decision trees
Dendrite morphological neurons (DMNs)
Dendrites
Dendrites (neurons)
Geometric accuracy
geometric shape
Geometry
Mathematical models
Model accuracy
Morphology
Multilayer perceptrons
Neurons
Pattern classification
Performance assessment
Radial basis function
Shape
smooth activation functions
softmax layer
Support vector machines
Training
World problems
title Improving the Classification Performance of Dendrite Morphological Neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Classification%20Performance%20of%20Dendrite%20Morphological%20Neurons&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gomez-Flores,%20Wilfrido&rft.date=2023-08-01&rft.volume=34&rft.issue=8&rft.spage=4659&rft.epage=4673&rft.pages=4659-4673&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3116519&rft_dat=%3Cproquest_pubme%3E2580692808%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845769461&rft_id=info:pmid/34623285&rft_ieee_id=9565144&rfr_iscdi=true