Loading…
Improving the Classification Performance of Dendrite Morphological Neurons
Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In a...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2023-08, Vol.34 (8), p.4659-4673 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083 |
container_end_page | 4673 |
container_issue | 8 |
container_start_page | 4659 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Gomez-Flores, Wilfrido Sossa, Humberto |
description | Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, k -nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems. |
doi_str_mv | 10.1109/TNNLS.2021.3116519 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580692808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9565144</ieee_id><sourcerecordid>2580692808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhi1EBSjwB4qEVuLCJcHjr9hHFCgEpWmlplJvlnd3HBbtroO9W6n_vhsScmAuM9I872j0EPIV6ASAmtvVcrn4NWGUwYQDKAnmiJwxUGzMuNbHh3n655RcpPRKh1JUKmFOyCkXinGm5Rl5njebGP5W7TrrXjCb1S6lyleF66rQZj8x-hAb1xaYBZ_dY1vGqsPse4ibl1CH9QDW2RL7GNp0Tr54Vye82PcR-f3tYTV7Gi9-PM5nd4txwSV0Y4U58NI4SrE0NIdclkapqcqnpXYcBFBHueceXCGAeeNyWioQ3hnNpaOaj8jN7u7w-FuPqbNNlQqsa9di6JNlUlNlmH5Hrz-hr6GP7fCdZVrIqTJCwUCxHVXEkFJEbzexalz8Z4HarWz7LttuZdu97CF0tT_d5w2Wh8iH2gG43AEVIh7WRg5pIfh_DweCYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845769461</pqid></control><display><type>article</type><title>Improving the Classification Performance of Dendrite Morphological Neurons</title><source>IEEE Xplore (Online service)</source><creator>Gomez-Flores, Wilfrido ; Sossa, Humberto</creator><creatorcontrib>Gomez-Flores, Wilfrido ; Sossa, Humberto</creatorcontrib><description>Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3116519</identifier><identifier>PMID: 34623285</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Brain modeling ; Classification ; Coarseness ; Complexity ; Configuration management ; Covariance matrices ; Decision trees ; Dendrite morphological neurons (DMNs) ; Dendrites ; Dendrites (neurons) ; Geometric accuracy ; geometric shape ; Geometry ; Mathematical models ; Model accuracy ; Morphology ; Multilayer perceptrons ; Neurons ; Pattern classification ; Performance assessment ; Radial basis function ; Shape ; smooth activation functions ; softmax layer ; Support vector machines ; Training ; World problems</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-08, Vol.34 (8), p.4659-4673</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</citedby><cites>FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</cites><orcidid>0000-0001-6758-6155 ; 0000-0002-0521-4898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9565144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34623285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Flores, Wilfrido</creatorcontrib><creatorcontrib>Sossa, Humberto</creatorcontrib><title>Improving the Classification Performance of Dendrite Morphological Neurons</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Coarseness</subject><subject>Complexity</subject><subject>Configuration management</subject><subject>Covariance matrices</subject><subject>Decision trees</subject><subject>Dendrite morphological neurons (DMNs)</subject><subject>Dendrites</subject><subject>Dendrites (neurons)</subject><subject>Geometric accuracy</subject><subject>geometric shape</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Morphology</subject><subject>Multilayer perceptrons</subject><subject>Neurons</subject><subject>Pattern classification</subject><subject>Performance assessment</subject><subject>Radial basis function</subject><subject>Shape</subject><subject>smooth activation functions</subject><subject>softmax layer</subject><subject>Support vector machines</subject><subject>Training</subject><subject>World problems</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhi1EBSjwB4qEVuLCJcHjr9hHFCgEpWmlplJvlnd3HBbtroO9W6n_vhsScmAuM9I872j0EPIV6ASAmtvVcrn4NWGUwYQDKAnmiJwxUGzMuNbHh3n655RcpPRKh1JUKmFOyCkXinGm5Rl5njebGP5W7TrrXjCb1S6lyleF66rQZj8x-hAb1xaYBZ_dY1vGqsPse4ibl1CH9QDW2RL7GNp0Tr54Vye82PcR-f3tYTV7Gi9-PM5nd4txwSV0Y4U58NI4SrE0NIdclkapqcqnpXYcBFBHueceXCGAeeNyWioQ3hnNpaOaj8jN7u7w-FuPqbNNlQqsa9di6JNlUlNlmH5Hrz-hr6GP7fCdZVrIqTJCwUCxHVXEkFJEbzexalz8Z4HarWz7LttuZdu97CF0tT_d5w2Wh8iH2gG43AEVIh7WRg5pIfh_DweCYA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gomez-Flores, Wilfrido</creator><creator>Sossa, Humberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6758-6155</orcidid><orcidid>https://orcid.org/0000-0002-0521-4898</orcidid></search><sort><creationdate>20230801</creationdate><title>Improving the Classification Performance of Dendrite Morphological Neurons</title><author>Gomez-Flores, Wilfrido ; Sossa, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Coarseness</topic><topic>Complexity</topic><topic>Configuration management</topic><topic>Covariance matrices</topic><topic>Decision trees</topic><topic>Dendrite morphological neurons (DMNs)</topic><topic>Dendrites</topic><topic>Dendrites (neurons)</topic><topic>Geometric accuracy</topic><topic>geometric shape</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Morphology</topic><topic>Multilayer perceptrons</topic><topic>Neurons</topic><topic>Pattern classification</topic><topic>Performance assessment</topic><topic>Radial basis function</topic><topic>Shape</topic><topic>smooth activation functions</topic><topic>softmax layer</topic><topic>Support vector machines</topic><topic>Training</topic><topic>World problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Flores, Wilfrido</creatorcontrib><creatorcontrib>Sossa, Humberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Flores, Wilfrido</au><au>Sossa, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Classification Performance of Dendrite Morphological Neurons</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>4659</spage><epage>4673</epage><pages>4659-4673</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses. To adjust the number of dendrites per class automatically, a tuning algorithm based on an incremental-decremental procedure is introduced. The classification performance assessment is conducted on nine synthetic and 49 real-world datasets. Meanwhile, 12 DMN variants are evaluated in terms of accuracy and model complexity. The DMN reaches its highest potential by combining spherical dendrites with smooth activation functions and a learnable softmax layer. It attained the highest accuracy, uses the simplest geometric shape, is insensitive to variables with zero variance, and its structural complexity diminishes by using the smooth maximum function. Furthermore, this DMN configuration performed competitively or even better than other well-established classifiers in terms of accuracy, such as support vector machine, multilayer perceptron, radial basis function network, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors, and random forest. Thus, the proposed DMN is an attractive alternative for pattern classification in real-world problems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34623285</pmid><doi>10.1109/TNNLS.2021.3116519</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6758-6155</orcidid><orcidid>https://orcid.org/0000-0002-0521-4898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-08, Vol.34 (8), p.4659-4673 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2580692808 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Algorithms Brain modeling Classification Coarseness Complexity Configuration management Covariance matrices Decision trees Dendrite morphological neurons (DMNs) Dendrites Dendrites (neurons) Geometric accuracy geometric shape Geometry Mathematical models Model accuracy Morphology Multilayer perceptrons Neurons Pattern classification Performance assessment Radial basis function Shape smooth activation functions softmax layer Support vector machines Training World problems |
title | Improving the Classification Performance of Dendrite Morphological Neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Classification%20Performance%20of%20Dendrite%20Morphological%20Neurons&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gomez-Flores,%20Wilfrido&rft.date=2023-08-01&rft.volume=34&rft.issue=8&rft.spage=4659&rft.epage=4673&rft.pages=4659-4673&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3116519&rft_dat=%3Cproquest_pubme%3E2580692808%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-6eb13d9a00ed90b1b5d96676b7d8a31410a03f3f1ac412f9ab0d614fa9835a083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845769461&rft_id=info:pmid/34623285&rft_ieee_id=9565144&rfr_iscdi=true |