Loading…

Exterior Dissipation, Proportional Decay, and Integrals of Motion

Given a dynamical system with m independent conserved quantities, we construct a multiparameter family of new systems in which these quantities evolve monotonically and proportionally, and are replaced by m−1 conserved linear combinations of themselves, with any of the original quantities as limitin...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-09, Vol.127 (13), p.1-134101, Article 134101
Main Authors: Aureli, M., Hanna, J. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543
cites cdi_FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543
container_end_page 134101
container_issue 13
container_start_page 1
container_title Physical review letters
container_volume 127
creator Aureli, M.
Hanna, J. A.
description Given a dynamical system with m independent conserved quantities, we construct a multiparameter family of new systems in which these quantities evolve monotonically and proportionally, and are replaced by m−1 conserved linear combinations of themselves, with any of the original quantities as limiting cases. The modification of the dynamics employs an exterior product of gradients of the original quantities, and often evolves the system toward asymptotic linear dependence of these gradients in a nontrivial state. The process both generalizes and provides additional structure to existing techniques for selective dissipation in the literature on fluids and plasmas, nonequilibrium thermodynamics, and nonlinear controls. It may be iterated or adapted to obtain any reduction in the degree of integrability. It may enable discovery of extremal states, limit cycles, or solitons, and the construction of new integrable systems from superintegrable systems. We briefly illustrate the approach by its application to the cyclic three-body Toda lattice, driven from an aperiodic orbit toward a limit cycle.
doi_str_mv 10.1103/PhysRevLett.127.134101
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580698709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578203043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOKdfQQq--LDOu6ZJk8exTR1MHKLPIU1T7eiamnTivr0t80F8uuP-P467HyHXCFNEoHebj0N4sV9r23VTTLIp0hQBT8gIIZNxhpiekhEAxVgCZOfkIoQtAGDCxYjMlt-d9ZXz0aIKoWp1V7lmEm28a50fel1HC2v0YRLppohWTWffva5D5MroyQ3AJTkr-4G9-q1j8na_fJ0_xuvnh9V8to4NRd7FaIRmOhU5Y5pmUnCmJcsNUIF9njKR0iLnSSEZlNqY_sDccEgsR1kkKUvpmNwe97befe5t6NSuCsbWtW6s2weVMAFcigxkj978Q7du7_tXBioTCVBIaU_xI2W8C8HbUrW-2ml_UAhqMKv-mFW9WXU0S38A1FltKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578203043</pqid></control><display><type>article</type><title>Exterior Dissipation, Proportional Decay, and Integrals of Motion</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Aureli, M. ; Hanna, J. A.</creator><creatorcontrib>Aureli, M. ; Hanna, J. A.</creatorcontrib><description>Given a dynamical system with m independent conserved quantities, we construct a multiparameter family of new systems in which these quantities evolve monotonically and proportionally, and are replaced by m−1 conserved linear combinations of themselves, with any of the original quantities as limiting cases. The modification of the dynamics employs an exterior product of gradients of the original quantities, and often evolves the system toward asymptotic linear dependence of these gradients in a nontrivial state. The process both generalizes and provides additional structure to existing techniques for selective dissipation in the literature on fluids and plasmas, nonequilibrium thermodynamics, and nonlinear controls. It may be iterated or adapted to obtain any reduction in the degree of integrability. It may enable discovery of extremal states, limit cycles, or solitons, and the construction of new integrable systems from superintegrable systems. We briefly illustrate the approach by its application to the cyclic three-body Toda lattice, driven from an aperiodic orbit toward a limit cycle.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.134101</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Nonequilibrium thermodynamics ; Nonlinear control ; Plasmas (physics) ; Solitary waves</subject><ispartof>Physical review letters, 2021-09, Vol.127 (13), p.1-134101, Article 134101</ispartof><rights>Copyright American Physical Society Sep 24, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543</citedby><cites>FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543</cites><orcidid>0000-0003-4242-0081 ; 0000-0001-9393-8521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Aureli, M.</creatorcontrib><creatorcontrib>Hanna, J. A.</creatorcontrib><title>Exterior Dissipation, Proportional Decay, and Integrals of Motion</title><title>Physical review letters</title><description>Given a dynamical system with m independent conserved quantities, we construct a multiparameter family of new systems in which these quantities evolve monotonically and proportionally, and are replaced by m−1 conserved linear combinations of themselves, with any of the original quantities as limiting cases. The modification of the dynamics employs an exterior product of gradients of the original quantities, and often evolves the system toward asymptotic linear dependence of these gradients in a nontrivial state. The process both generalizes and provides additional structure to existing techniques for selective dissipation in the literature on fluids and plasmas, nonequilibrium thermodynamics, and nonlinear controls. It may be iterated or adapted to obtain any reduction in the degree of integrability. It may enable discovery of extremal states, limit cycles, or solitons, and the construction of new integrable systems from superintegrable systems. We briefly illustrate the approach by its application to the cyclic three-body Toda lattice, driven from an aperiodic orbit toward a limit cycle.</description><subject>Nonequilibrium thermodynamics</subject><subject>Nonlinear control</subject><subject>Plasmas (physics)</subject><subject>Solitary waves</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOKdfQQq--LDOu6ZJk8exTR1MHKLPIU1T7eiamnTivr0t80F8uuP-P467HyHXCFNEoHebj0N4sV9r23VTTLIp0hQBT8gIIZNxhpiekhEAxVgCZOfkIoQtAGDCxYjMlt-d9ZXz0aIKoWp1V7lmEm28a50fel1HC2v0YRLppohWTWffva5D5MroyQ3AJTkr-4G9-q1j8na_fJ0_xuvnh9V8to4NRd7FaIRmOhU5Y5pmUnCmJcsNUIF9njKR0iLnSSEZlNqY_sDccEgsR1kkKUvpmNwe97befe5t6NSuCsbWtW6s2weVMAFcigxkj978Q7du7_tXBioTCVBIaU_xI2W8C8HbUrW-2ml_UAhqMKv-mFW9WXU0S38A1FltKA</recordid><startdate>20210924</startdate><enddate>20210924</enddate><creator>Aureli, M.</creator><creator>Hanna, J. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4242-0081</orcidid><orcidid>https://orcid.org/0000-0001-9393-8521</orcidid></search><sort><creationdate>20210924</creationdate><title>Exterior Dissipation, Proportional Decay, and Integrals of Motion</title><author>Aureli, M. ; Hanna, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Nonequilibrium thermodynamics</topic><topic>Nonlinear control</topic><topic>Plasmas (physics)</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aureli, M.</creatorcontrib><creatorcontrib>Hanna, J. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aureli, M.</au><au>Hanna, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exterior Dissipation, Proportional Decay, and Integrals of Motion</atitle><jtitle>Physical review letters</jtitle><date>2021-09-24</date><risdate>2021</risdate><volume>127</volume><issue>13</issue><spage>1</spage><epage>134101</epage><pages>1-134101</pages><artnum>134101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Given a dynamical system with m independent conserved quantities, we construct a multiparameter family of new systems in which these quantities evolve monotonically and proportionally, and are replaced by m−1 conserved linear combinations of themselves, with any of the original quantities as limiting cases. The modification of the dynamics employs an exterior product of gradients of the original quantities, and often evolves the system toward asymptotic linear dependence of these gradients in a nontrivial state. The process both generalizes and provides additional structure to existing techniques for selective dissipation in the literature on fluids and plasmas, nonequilibrium thermodynamics, and nonlinear controls. It may be iterated or adapted to obtain any reduction in the degree of integrability. It may enable discovery of extremal states, limit cycles, or solitons, and the construction of new integrable systems from superintegrable systems. We briefly illustrate the approach by its application to the cyclic three-body Toda lattice, driven from an aperiodic orbit toward a limit cycle.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.134101</doi><orcidid>https://orcid.org/0000-0003-4242-0081</orcidid><orcidid>https://orcid.org/0000-0001-9393-8521</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-09, Vol.127 (13), p.1-134101, Article 134101
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2580698709
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Nonequilibrium thermodynamics
Nonlinear control
Plasmas (physics)
Solitary waves
title Exterior Dissipation, Proportional Decay, and Integrals of Motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exterior%20Dissipation,%20Proportional%20Decay,%20and%20Integrals%20of%20Motion&rft.jtitle=Physical%20review%20letters&rft.au=Aureli,%20M.&rft.date=2021-09-24&rft.volume=127&rft.issue=13&rft.spage=1&rft.epage=134101&rft.pages=1-134101&rft.artnum=134101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.134101&rft_dat=%3Cproquest_cross%3E2578203043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1c8a5a48b55a379865a95bc038131645843db62d950facc000bc602e619d24543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578203043&rft_id=info:pmid/&rfr_iscdi=true