Loading…
Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression
Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in...
Saved in:
Published in: | Physical review letters 2021-09, Vol.127 (13), p.1-130501 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 130501 |
container_issue | 13 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 127 |
creator | Kandala, A Wei, K X Srinivasan, S Magesan, E Carnevale, S Keefe, G A Klaus, D Dial, O McKay, D C |
description | Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 > 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking. |
doi_str_mv | 10.1103/PhysRevLett.127.130501 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580698717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580698717</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-40f41b6a298d3a1d9871c29833063c44913c3512a4d20ce989c82b47b79f6dc93</originalsourceid><addsrcrecordid>eNpdjkFLwzAYhoMoOKd_QQJevHR-X5I1zVHmugkDRedll5Gl6ZbRpbVJ1f17K3ry9PLCw8NDyDXCCBH43fPuGF7sx8LGOEImR8hhDHhCBghSJRJRnJIBAMdEAchzchHCHgCQpdmAbB_sofYhtjq62tO6pJrO3XaX5K6wlYtHanwd6UxHS8u6pbn7skWSt_a9s94c6bLVPvwY6KeLOzr1W-etbW1BVyv62jVNa0PozZfkrNRVsFd_OyRv-XQ5mSeLp9nj5H6RNCjSmAgoBW5SzVRWcI2FyiSa_nAOKTdCKOSGj5FpUTAwVmXKZGwj5EaqMi2M4kNy--tt2rpPDHF9cMHYqtLe1l1Ys3EG6Y9V9ujNP3Rfd63v63pKZgwYV4p_A3lIaX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578202399</pqid></control><display><type>article</type><title>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Kandala, A ; Wei, K X ; Srinivasan, S ; Magesan, E ; Carnevale, S ; Keefe, G A ; Klaus, D ; Dial, O ; McKay, D C</creator><creatorcontrib>Kandala, A ; Wei, K X ; Srinivasan, S ; Magesan, E ; Carnevale, S ; Keefe, G A ; Klaus, D ; Dial, O ; McKay, D C</creatorcontrib><description>Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 > 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.130501</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Accuracy ; Coupling ; Crosstalk ; Quantum computing ; Qubits (quantum computing) ; Resonant interactions</subject><ispartof>Physical review letters, 2021-09, Vol.127 (13), p.1-130501</ispartof><rights>Copyright American Physical Society Sep 24, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kandala, A</creatorcontrib><creatorcontrib>Wei, K X</creatorcontrib><creatorcontrib>Srinivasan, S</creatorcontrib><creatorcontrib>Magesan, E</creatorcontrib><creatorcontrib>Carnevale, S</creatorcontrib><creatorcontrib>Keefe, G A</creatorcontrib><creatorcontrib>Klaus, D</creatorcontrib><creatorcontrib>Dial, O</creatorcontrib><creatorcontrib>McKay, D C</creatorcontrib><title>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</title><title>Physical review letters</title><description>Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 > 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.</description><subject>Accuracy</subject><subject>Coupling</subject><subject>Crosstalk</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Resonant interactions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLwzAYhoMoOKd_QQJevHR-X5I1zVHmugkDRedll5Gl6ZbRpbVJ1f17K3ry9PLCw8NDyDXCCBH43fPuGF7sx8LGOEImR8hhDHhCBghSJRJRnJIBAMdEAchzchHCHgCQpdmAbB_sofYhtjq62tO6pJrO3XaX5K6wlYtHanwd6UxHS8u6pbn7skWSt_a9s94c6bLVPvwY6KeLOzr1W-etbW1BVyv62jVNa0PozZfkrNRVsFd_OyRv-XQ5mSeLp9nj5H6RNCjSmAgoBW5SzVRWcI2FyiSa_nAOKTdCKOSGj5FpUTAwVmXKZGwj5EaqMi2M4kNy--tt2rpPDHF9cMHYqtLe1l1Ys3EG6Y9V9ujNP3Rfd63v63pKZgwYV4p_A3lIaX0</recordid><startdate>20210924</startdate><enddate>20210924</enddate><creator>Kandala, A</creator><creator>Wei, K X</creator><creator>Srinivasan, S</creator><creator>Magesan, E</creator><creator>Carnevale, S</creator><creator>Keefe, G A</creator><creator>Klaus, D</creator><creator>Dial, O</creator><creator>McKay, D C</creator><general>American Physical Society</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210924</creationdate><title>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</title><author>Kandala, A ; Wei, K X ; Srinivasan, S ; Magesan, E ; Carnevale, S ; Keefe, G A ; Klaus, D ; Dial, O ; McKay, D C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-40f41b6a298d3a1d9871c29833063c44913c3512a4d20ce989c82b47b79f6dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Coupling</topic><topic>Crosstalk</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Resonant interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandala, A</creatorcontrib><creatorcontrib>Wei, K X</creatorcontrib><creatorcontrib>Srinivasan, S</creatorcontrib><creatorcontrib>Magesan, E</creatorcontrib><creatorcontrib>Carnevale, S</creatorcontrib><creatorcontrib>Keefe, G A</creatorcontrib><creatorcontrib>Klaus, D</creatorcontrib><creatorcontrib>Dial, O</creatorcontrib><creatorcontrib>McKay, D C</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandala, A</au><au>Wei, K X</au><au>Srinivasan, S</au><au>Magesan, E</au><au>Carnevale, S</au><au>Keefe, G A</au><au>Klaus, D</au><au>Dial, O</au><au>McKay, D C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</atitle><jtitle>Physical review letters</jtitle><date>2021-09-24</date><risdate>2021</risdate><volume>127</volume><issue>13</issue><spage>1</spage><epage>130501</epage><pages>1-130501</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 > 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.130501</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-09, Vol.127 (13), p.1-130501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2580698717 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Accuracy Coupling Crosstalk Quantum computing Qubits (quantum computing) Resonant interactions |
title | Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20a%20High-Fidelity%20cnot%20Gate%20for%20Fixed-Frequency%20Transmons%20with%20Engineered%20ZZ%20Suppression&rft.jtitle=Physical%20review%20letters&rft.au=Kandala,%20A&rft.date=2021-09-24&rft.volume=127&rft.issue=13&rft.spage=1&rft.epage=130501&rft.pages=1-130501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.130501&rft_dat=%3Cproquest%3E2580698717%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-40f41b6a298d3a1d9871c29833063c44913c3512a4d20ce989c82b47b79f6dc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578202399&rft_id=info:pmid/&rfr_iscdi=true |