Loading…

Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression

Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-09, Vol.127 (13), p.1-130501
Main Authors: Kandala, A, Wei, K X, Srinivasan, S, Magesan, E, Carnevale, S, Keefe, G A, Klaus, D, Dial, O, McKay, D C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 130501
container_issue 13
container_start_page 1
container_title Physical review letters
container_volume 127
creator Kandala, A
Wei, K X
Srinivasan, S
Magesan, E
Carnevale, S
Keefe, G A
Klaus, D
Dial, O
McKay, D C
description Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 > 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.
doi_str_mv 10.1103/PhysRevLett.127.130501
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580698717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580698717</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-40f41b6a298d3a1d9871c29833063c44913c3512a4d20ce989c82b47b79f6dc93</originalsourceid><addsrcrecordid>eNpdjkFLwzAYhoMoOKd_QQJevHR-X5I1zVHmugkDRedll5Gl6ZbRpbVJ1f17K3ry9PLCw8NDyDXCCBH43fPuGF7sx8LGOEImR8hhDHhCBghSJRJRnJIBAMdEAchzchHCHgCQpdmAbB_sofYhtjq62tO6pJrO3XaX5K6wlYtHanwd6UxHS8u6pbn7skWSt_a9s94c6bLVPvwY6KeLOzr1W-etbW1BVyv62jVNa0PozZfkrNRVsFd_OyRv-XQ5mSeLp9nj5H6RNCjSmAgoBW5SzVRWcI2FyiSa_nAOKTdCKOSGj5FpUTAwVmXKZGwj5EaqMi2M4kNy--tt2rpPDHF9cMHYqtLe1l1Ys3EG6Y9V9ujNP3Rfd63v63pKZgwYV4p_A3lIaX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578202399</pqid></control><display><type>article</type><title>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Kandala, A ; Wei, K X ; Srinivasan, S ; Magesan, E ; Carnevale, S ; Keefe, G A ; Klaus, D ; Dial, O ; McKay, D C</creator><creatorcontrib>Kandala, A ; Wei, K X ; Srinivasan, S ; Magesan, E ; Carnevale, S ; Keefe, G A ; Klaus, D ; Dial, O ; McKay, D C</creatorcontrib><description>Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 &gt; 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.130501</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Accuracy ; Coupling ; Crosstalk ; Quantum computing ; Qubits (quantum computing) ; Resonant interactions</subject><ispartof>Physical review letters, 2021-09, Vol.127 (13), p.1-130501</ispartof><rights>Copyright American Physical Society Sep 24, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kandala, A</creatorcontrib><creatorcontrib>Wei, K X</creatorcontrib><creatorcontrib>Srinivasan, S</creatorcontrib><creatorcontrib>Magesan, E</creatorcontrib><creatorcontrib>Carnevale, S</creatorcontrib><creatorcontrib>Keefe, G A</creatorcontrib><creatorcontrib>Klaus, D</creatorcontrib><creatorcontrib>Dial, O</creatorcontrib><creatorcontrib>McKay, D C</creatorcontrib><title>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</title><title>Physical review letters</title><description>Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 &gt; 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.</description><subject>Accuracy</subject><subject>Coupling</subject><subject>Crosstalk</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Resonant interactions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLwzAYhoMoOKd_QQJevHR-X5I1zVHmugkDRedll5Gl6ZbRpbVJ1f17K3ry9PLCw8NDyDXCCBH43fPuGF7sx8LGOEImR8hhDHhCBghSJRJRnJIBAMdEAchzchHCHgCQpdmAbB_sofYhtjq62tO6pJrO3XaX5K6wlYtHanwd6UxHS8u6pbn7skWSt_a9s94c6bLVPvwY6KeLOzr1W-etbW1BVyv62jVNa0PozZfkrNRVsFd_OyRv-XQ5mSeLp9nj5H6RNCjSmAgoBW5SzVRWcI2FyiSa_nAOKTdCKOSGj5FpUTAwVmXKZGwj5EaqMi2M4kNy--tt2rpPDHF9cMHYqtLe1l1Ys3EG6Y9V9ujNP3Rfd63v63pKZgwYV4p_A3lIaX0</recordid><startdate>20210924</startdate><enddate>20210924</enddate><creator>Kandala, A</creator><creator>Wei, K X</creator><creator>Srinivasan, S</creator><creator>Magesan, E</creator><creator>Carnevale, S</creator><creator>Keefe, G A</creator><creator>Klaus, D</creator><creator>Dial, O</creator><creator>McKay, D C</creator><general>American Physical Society</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210924</creationdate><title>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</title><author>Kandala, A ; Wei, K X ; Srinivasan, S ; Magesan, E ; Carnevale, S ; Keefe, G A ; Klaus, D ; Dial, O ; McKay, D C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-40f41b6a298d3a1d9871c29833063c44913c3512a4d20ce989c82b47b79f6dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Coupling</topic><topic>Crosstalk</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Resonant interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandala, A</creatorcontrib><creatorcontrib>Wei, K X</creatorcontrib><creatorcontrib>Srinivasan, S</creatorcontrib><creatorcontrib>Magesan, E</creatorcontrib><creatorcontrib>Carnevale, S</creatorcontrib><creatorcontrib>Keefe, G A</creatorcontrib><creatorcontrib>Klaus, D</creatorcontrib><creatorcontrib>Dial, O</creatorcontrib><creatorcontrib>McKay, D C</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandala, A</au><au>Wei, K X</au><au>Srinivasan, S</au><au>Magesan, E</au><au>Carnevale, S</au><au>Keefe, G A</au><au>Klaus, D</au><au>Dial, O</au><au>McKay, D C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression</atitle><jtitle>Physical review letters</jtitle><date>2021-09-24</date><risdate>2021</risdate><volume>127</volume><issue>13</issue><spage>1</spage><epage>130501</epage><pages>1-130501</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 &gt; 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.130501</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-09, Vol.127 (13), p.1-130501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2580698717
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Accuracy
Coupling
Crosstalk
Quantum computing
Qubits (quantum computing)
Resonant interactions
title Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20a%20High-Fidelity%20cnot%20Gate%20for%20Fixed-Frequency%20Transmons%20with%20Engineered%20ZZ%20Suppression&rft.jtitle=Physical%20review%20letters&rft.au=Kandala,%20A&rft.date=2021-09-24&rft.volume=127&rft.issue=13&rft.spage=1&rft.epage=130501&rft.pages=1-130501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.130501&rft_dat=%3Cproquest%3E2580698717%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-40f41b6a298d3a1d9871c29833063c44913c3512a4d20ce989c82b47b79f6dc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578202399&rft_id=info:pmid/&rfr_iscdi=true